Equipe Labellisee

Nantes, France

Equipe Labellisee

Nantes, France

Time filter

Source Type

Damm F.,French Institute of Health and Medical Research | Damm F.,Institute Gustave Roussy | Mylonas E.,French Institute of Health and Medical Research | Mylonas E.,Institute Gustave Roussy | And 56 more authors.
Cancer Discovery | Year: 2014

Appropriate cancer care requires a thorough understanding of the natural history of the disease, including the cell of origin, the pattern of clonal evolution, and the functional consequences of the mutations. Using deep sequencing of flow-sorted cell populations from patients with chronic lymphocytic leukemia (CLL), we established the presence of acquired mutations in multipotent hematopoietic progenitors. Mutations affected known lymphoid oncogenes, including BRAF, NOTCH1, and SF3B1. NFKBIE and EGR2 mutations were observed at unexpectedly high frequencies, 10.7% and 8.3% of 168 advanced-stage patients, respectively. EGR2 mutations were associated with a shorter time to treatment and poor overall survival. Analyses of BRAF and EGR2 mutations suggest that they result in deregulation of B-cell receptor (BCR) intracellular signaling. Our data propose disruption of hematopoietic and early B-cell differentiation through the deregulation of pre-BCR signaling as a phenotypic outcome of CLL mutations and show that CLL develops from a pre-leukemic phase. SIGNIFICANCE: The origin and pathogenic mechanisms of CLL are not fully understood. The current work indicates that CLL develops from pre-leukemic multipotent hematopoietic progenitors carrying somatic mutations. It advocates for abnormalities in early B-cell differentiation as a phenotypic convergence of the diverse acquired mutations observed in CLL. © 2014 American Association for Cancer Research.


Shirinian M.,American University of Beirut | Kambris Z.,American University of Beirut | Hamadeh L.,American University of Beirut | Grabbe C.,Umeå University | And 11 more authors.
Journal of Virology | Year: 2015

Human T-cell lymphotropic virus type 1 (HTLV-1)-induced adult T-cell leukemia/lymphoma is an aggressive malignancy. HTLV-2 is genetically related to HTLV-1 but does not cause any malignant disease. HTLV-1 Tax transactivator (Tax-1) contributes to leukemogenesis via NF-κB. We describe transgenic Drosophila models expressing Tax in the compound eye and plasmatocytes. We demonstrate that Tax-1 but not Tax-2 induces ommatidial perturbation and increased plasmatocyte proliferation and that the eye phenotype is dependent on Kenny (IKKγ/NEMO), thus validating this new in vivo model. © 2015, American Society for Microbiology.


Guiho R.,French Institute of Health and Medical Research | Guiho R.,Equipe Labellisee | Guiho R.,University of Nantes | Biteau K.,French Institute of Health and Medical Research | And 8 more authors.
Future Oncology | Year: 2015

Osteosarcoma and Ewing's sarcoma, the two most frequent malignant primary tumors preferentially arise in children and young adults, and have a poor prognosis. TRAIL represents a promising therapeutic approach for most cancers but in the case of primary bone tumors, osteosarcoma cell lines are highly resistant to this pro-apoptotic cytokine. In addition, another signaling pathway mediating cell proliferation and migration may be even activated in this subset of resistant cells leading to protumoral effect. Therapeutic perspectives are linked to possibility to overcome TRAIL resistance by combining other drugs with TRAIL or death receptors agonistic antibodies. We hypothesized that the bone microenvironment may provide a favorable niche for TRAIL resistance that might be targeted by new resensitizing agents. © 2015 Future Medicine Ltd.


Jacque N.,French Institute of Health and Medical Research | Jacque N.,Equipe Labellisee | Ronchetti A.M.,French Institute of Health and Medical Research | Ronchetti A.M.,Equipe Labellisee | And 44 more authors.
Blood | Year: 2015

Cancer cells require glutamine to adapt to increased biosynthetic activity. The limiting step in intracellular glutamine catabolism involves its conversion to glutamate by glutaminase (GA). Different GA isoforms are encoded by the genes GLS1 and GLS2 in humans. Herein, we show that glutamine levels control mitochondrial oxidative phosphorylation (OXPHOS) in acute myeloid leukemia (AML) cells. Glutaminase C (GAC) is the GA isoform that is most abundantly expressed in AML. Both knockdown of GLS1 expression and pharmacologic GLS1 inhibition by the drug CB-839 can reduce OXPHOS, leading to leukemic cell proliferation arrest and apoptosis without causing cytotoxic activity against normal human CD34+ progenitors. Strikingly, GLS1 knockdown dramatically inhibited AML development in NSG mice. The antileukemic activity of CB-839 was abrogated by both the expression of a hyperactive GACK320A allele and the addition of the tricarboxyclic acid cycle product α-ketoglutarate, indicating the critical function of GLS1 in AML cell survival. Finally, glutaminolysis inhibition activated mitochondrial apoptosis and synergistically sensitized leukemic cells to priming with the BCL-2 inhibitor ABT-199. These findings show that targeting glutamine addiction via GLS1 inhibition offers a potential novel therapeutic strategy for AML. © 2015 by The American Society of Hematology.


Wagner R.Y.,Institute Curie | Wagner R.Y.,French National Center for Scientific Research | Wagner R.Y.,French Institute of Health and Medical Research | Wagner R.Y.,Equipe Labellisee | And 30 more authors.
Journal of Investigative Dermatology | Year: 2015

Vitiligo is the most common depigmenting disorder resulting from the loss of melanocytes from the basal epidermal layer. The pathogenesis of the disease is likely multifactorial and involves autoimmune causes, as well as oxidative and mechanical stress. It is important to identify early events in vitiligo to clarify pathogenesis, improve diagnosis, and inform therapy. Here, we show that E-cadherin (Ecad), which mediates the adhesion between melanocytes and keratinocytes in the epidermis, is absent from or discontinuously distributed across melanocyte membranes of vitiligo patients long before clinical lesions appear. This abnormality is associated with the detachment of the melanocytes from the basal to the suprabasal layers in the epidermis. Using human epidermal reconstructed skin and mouse models with normal or defective Ecad expression in melanocytes, we demonstrated that Ecad is required for melanocyte adhesiveness to the basal layer under oxidative and mechanical stress, establishing a link between silent/preclinical, cell-autonomous defects in vitiligo melanocytes and known environmental stressors accelerating disease expression. Our results implicate a primary predisposing skin defect affecting melanocyte adhesiveness that, under stress conditions, leads to disappearance of melanocytes and clinical vitiligo. Melanocyte adhesiveness is thus a potential target for therapy aiming at disease stabilization. © 2015 The Society for Investigative Dermatology.


David L.,Equipe Labellisee | David L.,French Institute of Health and Medical Research | David L.,University Paul Sabatier | Fernandez-Vidal A.,Equipe Labellisee | And 38 more authors.
Science Signaling | Year: 2016

The nucleoside analog cytarabine, an inhibitor of DNA replication fork progression that results in DNA damage, is currently used in the treatment of acute myeloid leukemia (AML). We explored the prognostic value of the expression of 72 genes involved in various aspects of DNA replication in a set of 198 AML patients treated by cytarabine-based chemotherapy. We unveiled that high expression of the DNA replication checkpoint gene CHEK1 is a prognosticmarker associatedwith shorter overall, event-free, and relapse-free survivals and determined that the expression ofCHEK1can predict more frequent and earlier postremission relapse. CHEK1 encodes checkpoint kinase 1 (CHK1), which is activated by the kinase ATR when DNA replication is impaired by DNA damage. High abundance of CHK1 in AML patient cells correlated with higher clonogenic ability and more efficient DNA replication fork progression upon cytarabine treatment. Exposing the patient cells with the high abundance of CHK1 to SCH900776, an inhibitor of the kinase activity of CHK1, reduced clonogenic ability and progression ofDNAreplication in the presence of cytarabine. These results indicated that some AML cells rely on an efficient CHK1-mediated replication stress response for viability and that therapeutic strategies that inhibit CHK1 could extend current cytarabine-based treatments and overcome drug resistance. Furthermore, monitoringCHEK1expression could be used both as a predictor of outcome and as a marker to select AML patients for CHK1 inhibitor treatments.


Pasquier F.,French Institute of Health and Medical Research | Pasquier F.,Institute Gustave Roussy | Pasquier F.,Institut Universitaire de France | Pasquier F.,Equipe Labellisee | And 16 more authors.
Clinical Lymphoma, Myeloma and Leukemia | Year: 2014

The discovery of the JAK2V617F mutation followed by the discovery of other genetic abnormalities allowed important progress in the understanding of the pathogenesis and management of myeloproliferative neoplasms (MPN)s. Classical Breakpoint cluster region-Abelson (BCR-ABL)-negative neoplasms include 3 main disorders: essential thrombocythemia (ET), polycythemia vera (PV), and primary myelofibrosis (PMF). Genomic studies have shown that these disorders are more heterogeneous than previously thought with 3 main entities corresponding to different gene mutations: the JAK2 disorder, essentially due to JAK2V617F mutation, which includes nearly all PVs and a majority of ETs and PMFs with a continuum between these diseases and the myeloproliferative leukemia (MPL) and calreticulin (CALR) disorders, which include a fraction of ET and PMF. All of these mutations lead to a JAK2 constitutive activation. Murine models either with JAK2V617F or MPLW515L, but also with JAK2 or MPL germ line mutations found in hereditary thrombocytosis, have demonstrated that they are drivers of myeloproliferation. However, the myeloproliferative driver mutation is still unknown in approximately 15% of ET and PMF, but appears to also target the JAK/Signal Transducer and Activator of Transcription (STAT) pathway. However, other mutations in genes involved in epigenetics or splicing also can be present and can predate or follow mutations in signaling. They are involved either in clonal dominance or in phenotypic changes, more particularly in PMF. They can be associated with leukemic progression and might have an important prognostic value such as additional sex comb-like 1 mutations. Despite this heterogeneity, it is tempting to target JAK2 and its signaling for therapy. However in PMF, Adenosine Tri-Phosphate (ATP)-competitive JAK2 inhibitors have shown their interest, but also their important limitations. Thus, other approaches are required, which are discussed in this review. © 2014 Elsevier Inc.


Le Coz M.,Institute Curie | Le Coz M.,French National Center for Scientific Research | Le Coz M.,French Institute of Health and Medical Research | Le Coz M.,Equipe labellisee | And 6 more authors.
Experimental Dermatology | Year: 2014

We show, for the first time, that melanocytes can form a primary cilium in vitro, corresponding to an immotile or sensory cilium. Such cilia are observed when melanocytes reach confluence or when medium nutrient levels are insufficient. This observation should greatly improve our understanding of the signal transduction processes potentially occurring in these cells during embryonic development, homeostasis in adulthood and melanomagenesis. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.


El Hajj H.,American University of Beirut | El-Sabban M.,American University of Beirut | Hasegawa H.,Japan National Institute of Infectious Diseases | Hasegawa H.,University College Dublin | And 12 more authors.
Journal of Experimental Medicine | Year: 2010

Chronic HTLV-I (human T cell lymphotropic virus type I) infection may cause adult T cell leukemia/lymphoma (ATL), a disease with dismal long-term prognosis. The HTLV-I transactivator, Tax, initiates ATL in transgenic mice. In this study, we demonstrate that an As2O3 and IFN-α combination, known to trigger Tax proteolysis, cures Tax-driven ATL in mice. Unexpectedly, this combination therapy abrogated initial leukemia engraftment into secondary recipients, whereas the primary tumor bulk still grew in the primary hosts, only to ultimately abate later on. This loss of initial transplantability required proteasome function. A similar regimen recently yielded unprecedented disease control in human ATL. Our demonstration that this drug combination targeting Tax stability abrogates tumor cell immortality but not short-term growth may foretell a favorable long-term efficiency of this regimen in patients. © 2010 El Hajj et al.


Adam K.,University of Paris Descartes | Adam K.,Equipe Labellisee | Lambert M.,University of Paris Descartes | Lambert M.,Equipe Labellisee | And 13 more authors.
Bioscience Reports | Year: 2015

The oncogenic Pim2 kinase is overexpressed in several haematological malignancies, such as multiple myeloma and acute myeloid leukaemia (AML), and constitutes a strong therapeutic target candidate. Like other Pim kinases, Pim2 is constitutively active and is believed to be essentially regulated through its accumulation. We show that in leukaemic cells, the three Pim2 isoforms have dramatically short half-lives although the longer isoform is significantly more stable than the shorter isoforms. All isoforms present a cytoplasmic localization and their degradation was neither modified by broad-spectrum kinase or phosphatase inhibitors such as staurosporine or okadaic acid nor by specific inhibition of several intracellular signalling pathways including Erk, Akt and mTORC1. Pim2 degradation was inhibited by proteasome inhibitors but Pim2 ubiquitination was not detected even by blocking both proteasome activity and protein de-ubiquitinases (DUBs). Moreover, Pyr41, an ubiquitin-activating enzyme (E1) inhibitor, did not stabilize Pim2, strongly suggesting that Pim2 was degraded by the proteasome without ubiquitination. In agreement, we observed that purified 20S proteasome particles could degrade Pim2 molecule in vitro. Pim2 mRNA accumulation in UT7 cells was controlled by erythropoietin (Epo) through STAT5 transcription factors. In contrast, the translation of Pim2 mRNA was not regulated by mTORC1. Overall, our results suggest that Pim2 is only controlled by its mRNA accumulation level. Catalytically active Pim2 accumulated in proteasome inhibitor-treated myeloma cells. We show that Pim2 inhibitors and proteasome inhibitors, such as bortezomib, have additive effects to inhibit the growth of myeloma cells, suggesting that Pim2 could be an interesting target for the treatment of multiple myeloma. © 2015 Authors.

Loading Equipe Labellisee collaborators
Loading Equipe Labellisee collaborators