Burlingame, CA, United States
Burlingame, CA, United States

Time filter

Source Type

Landry J.P.,University of California at Davis | Ke Y.,Epitomics Inc. | Yu G.-L.,Epitomics Inc. | Zhu X.D.,University of California at Davis
Journal of Immunological Methods | Year: 2015

Monoclonal antibodies (mAbs) are major reagents for research and clinical diagnosis. For their inherently high specificities to intended antigen targets and thus low toxicity in general, they are pursued as one of the major classes of new drugs. Yet binding properties of most monoclonal antibodies are not well characterized in terms of affinity constants and how they vary with presentations and/or conformational isomers of antigens, buffer compositions, and temperature. We here report a microarray-based label-free assay platform for high-throughput measurements of monoclonal antibody affinity constants to antigens immobilized on solid surfaces. Using this platform we measured affinity constants of over 1410 rabbit monoclonal antibodies and 46 mouse monoclonal antibodies to peptide targets that are immobilized through a terminal cysteine residue to a glass surface. The experimentally measured affinity constants vary from 10 pM to 200 pM with the median value at 66 pM. We compare the results obtained from the microarray-based platform with those from a benchmarking surface-plasmon-resonance-based (SPR) sensor (Biacore 3000). © 2014 Elsevier B.V.


Yoshizuka N.,Scripps Research Institute | Chen R.M.,Scripps Research Institute | Chen R.M.,Epitomics Inc. | Xu Z.,Scripps Research Institute | And 9 more authors.
Molecular and Cellular Biology | Year: 2012

The p38 mitogen-activated protein kinase (MAPK) pathway has been implicated in both suppression and promotion of tumorigenesis. It remains unclear how these 2 opposite functions of p38 operate in vivo to impact cancer development. We previously reported that a p38 downstream kinase, p38-regulated/activated kinase (PRAK), suppresses tumor initiation and promotion by mediating oncogene-induced senescence in a murine skin carcinogenesis model. Here, using the same model, we show that once the tumors are formed, PRAK promotes the growth and progression of skin tumors. Further studies identify PRAK as a novel host factor essential for tumor angiogenesis. In response to tumor-secreted proangiogenic factors, PRAK is activated by p38 via a vascular endothelial growth factor receptor 2 (VEGFR2)-dependent mechanism in host endothelial cells, where it mediates cell migration toward tumors and incorporation of these cells into tumor vasculature, at least partly by regulating the phosphorylation and activation of focal adhesion kinase (FAK) and cytoskeletal reorganization. These findings have uncovered a novel signaling circuit essential for endothelial cell motility and tumor angiogenesis. Moreover, we demonstrate that the tumorsuppressing and tumor-promoting functions of the p38-PRAK pathway are temporally and spatially separated during cancer development in vivo, relying on the stimulus, and the tissue type and the stage of cancer development in which it is activated. © 2012, American Society for Microbiology.


Patent
Jiangsu Simcere Pharmaceutical R&D Co. and Epitomics Inc. | Date: 2012-07-04

The present invention provides an anti-VEGF monoclonal antibody, which has the variable region of heavy chain comprising the amino acid sequences of SEQ ID NO.1, SEQ ID NO.2 and SEQ ID NO.3, and/or the variable region of light chain comprising the amino acid sequences of SEQ ID NO.4, SEQ ID NO.5 and SEQ ID NO.6. The antibody can be produced by the cell line with the preservation number of CGMCC NO.3233. The invention also provides the use of said antibody for the manufacture of medicaments for the treatment of a disease that is relevant to VEGF, wherein further provided are pharmaceutical composition, agents, kits and chips comprising said antibody, as well as the cell line with the preservation number of CGMCC NO.3233.


Patent
Epitomics Inc. | Date: 2010-07-30

An antibody is provided. In certain cases, the antibody comprises: a) a heavy chain variable domain that comprises CDR regions that are substantially identical to the heavy chain CDR regions of a selected antibody and b) a light chain variable domain that comprises CDR regions that are substantially identical to the light chain CDR regions of the selected antibody, where the antibody binds a selected target.


Patent
Epitomics Inc. | Date: 2014-08-13

A method of screening is provided. In certain embodiments, the method involves a) obtaining the nucleotide sequences of: i. a heavy chain-encoding nucleic acid that encodes the variable domain of a heavy chain of a first antibody of an animal; and ii. a light chain-encoding nucleic acid that encodes the variable domain of a light chain of the first antibody; b) obtaining nucleotide sequences of cDNAs encoding at least a portion of the antibody repertoire of the animal; c) computationally screening the sequences obtained in b) to identify heavy and light chain sequences that are related by lineage to the heavy and light chain sequences of a); and d) testing at least one pair of the heavy and light chain sequences identified in c) to identify a second antibody that binds to the same antigen as the first antibody.


Patent
Epitomics Inc. | Date: 2014-10-20

The invention provides a method for identifying positions of an antibody that can be modified without significantly reducing the binding activity of the antibody. In many embodiments, the method involves identifying a substitutable position in a parent antibody by comparing its amino acid sequence to the amino acid sequences of a number of related antibodies that each bind to the same antigen as the parent antibody. The amino acid at the substitutable position may be substituted for a different amino acid without significantly affecting the activity of the antibody. The subject methods may be employed to change the amino acid sequence of a CDR without significantly reducing the affinity of the antibody of the antibody, in humanization methods, or in other antibody engineering methods. The invention finds use in a variety of therapeutic, diagnostic and research applications.


Patent
Epitomics Inc. | Date: 2015-12-17

In certain embodiments, the method may comprise: a) obtaining the antibody sequences from a population of B cells; b) grouping the antibody sequences to provide a plurality of groups of lineage-related antibodies; c) testing a single antibody from each of the groups in a bioassay and, after the first antibody has been identified, d) testing further antibodies that are in the same group as the first antibody in a second bioassay. In another embodiment, the method may comprise: a) testing a plurality of antibodies obtained from a first portion of an antibody producing organ of an animal; b) obtaining the sequence of a first identified antibody; c) obtaining from a second portion of said antibody producing organ the sequences of further antibodies that are related by lineage to said first antibody; and, c) testing the further antibodies in a second bioassay.


Patent
Epitomics Inc. | Date: 2013-01-23

In certain embodiments, the method may comprise: a) obtaining the antibody sequences from a population of B cells; b) grouping the antibody sequences to provide a plurality of groups of lineage-related antibodies; c) testing a single antibody from each of the groups in a bioassay and, after the first antibody has been identified, d) testing further antibodies that are in the same group as the first antibody in a second bioassay. In another embodiment, the method may comprise: a) testing a plurality of antibodies obtained from a first portion of an antibody producing organ of an animal; b) obtaining the sequence of a first identified antibody; c) obtaining from a second portion of said antibody producing organ the sequences of further antibodies that are related by lineage to said first antibody; and, c) testing the further antibodies in a second bioassay.


Patent
Epitomics Inc. | Date: 2013-01-02

The invention provides a rabbit-derived immortal B-lymphocyte capable of fusion with a rabbit splenocyte to produce a hybrid cell that produces an antibody. The immortal B-lymphocyte does not detectably express endogenous immunoglobulin heavy chain and may contain, in certain embodiments, an altered immunoglobulin heavy chain-encoding gene. A hybridoma resulting from fusion between the subject immortal B-lymphocyte and a rabbit antibody-producing cell is provided, as is a method of using that hybridoma to produce an antibody. The subject invention finds use in a variety of different diagnostic, therapeutic and research applications.


Patent
Epitomics Inc. | Date: 2016-04-01

The invention provides a rabbit-derived immortal B-lymphocyte capable of fusion with a rabbit splenocyte to produce a hybrid cell that produces an antibody. The immortal B-lymphocyte does not detectably express endogenous immunoglobulin heavy chain and may contain, in certain embodiments, an altered immunoglobulin heavy chain-encoding gene. A hybridoma resulting from fusion between the subject immortal B-lymphocyte and a rabbit antibody-producing cell is provided, as is a method of using that hybridoma to produce an antibody. The subject invention finds use in a variety of different diagnostic, therapeutic and research applications.

Loading Epitomics Inc. collaborators
Loading Epitomics Inc. collaborators