Time filter

Source Type

Flamborough, Canada

Houweling D.,EnviroSim Associates | Comeau Y.,Ecole Polytechnique de Montreal | Takacs I.,EnviroSim Associates | Dold P.,EnviroSim Associates
Water Science and Technology | Year: 2010

The overall potential for enhanced biological phosphorus removal (EBPR) in the activated sludge process is constrained by the availability of volatile fatty acids (VFAs). The efficiency with which polyphosphate accumulating organisms (PAOs) use these VFAs for P-removal, however, is determined by the stoichiometric ratios governing their anaerobic and aerobic metabolism. While changes in anaerobic stoichiometry due to environmental conditions do affect EBPR performance to a certain degree, model-based analyses indicate that variability in aerobic stoichiometry has the greatest impact. Long-term deterioration in EBPR performance in an experimental SBR system undergoing P-limitation can be predicted as the consequence of competition between PAOs and GAOs. However, the observed rapid decrease in P-release after the change in feed composition is not consistent with a gradual shift in population. © IWA Publishing 2010. Source

Mansour-Geoffrion M.,Ecole Polytechnique de Montreal | Dold P.L.,EnviroSim Associates | Lamarre D.,John Meunier Inc. | Gadbois A.,John Meunier Inc. | And 2 more authors.
Minerals Engineering | Year: 2010

Typically, 15-45% of the mixed liquor (sludge) in biological wastewater treatment plants (WWTPs) consists of inorganic (fixed) suspended solids. A portion of these inorganic compounds is grit (sand) originating from the influent. Grit accumulation impacts WWTP design and operating costs as these unbiodegradable solids reduce the effective treatment capacity of the bioreactor and other unit operations that must be sized to carry this material. The goal of this study was to characterize the performance of a hydrocyclone to selectively separate grit from activated sludge. Laboratory experiments were conducted with a 13 mm diameter Krebs hydrocyclone treating sludge from eight WWTPs. Reduced efficiencies of 17 ± 7% on fixed suspended solids and 9 ± 6% on volatile suspended solids were obtained. Grade efficiency curves enabled the development of a modified definition for cut size useful for this application. The characterization of hydrocyclone performance for grit removal from activated sludge will enable modelling of the process for integration into wastewater treatment simulators used for process performance prediction and design. © 2009 Elsevier Ltd. All rights reserved. Source

Labelle M.-A.,Ecole Polytechnique de Montreal | Ramdani A.,Ecole Polytechnique de Montreal | Deleris S.,Veolia | Gadbois A.,John Meunier Inc. | And 2 more authors.
Water Science and Technology | Year: 2011

Coupling the activated sludge and the ozonation processes is an efficient, although expensive, solution for sludge reduction. A better knowledge of the mechanisms involved in the degradation of various sludge fractions by ozone is needed to optimize the coupled process. The objectives of this study were to determine the biodegradability of ozone-solubilized endogenous residue, the action of ozone on the active biomass and the solubilization yield of these two main sludge fractions. Batch tests were conducted with slug input of ozone stock solution into fresh or aerobically digested synthetic sludge. Biodegradability of the solubilized endogenous residue was increased by ozonation by up to 0.27 g BOD 5/g COD i. Ozone caused biomass lysis, as opposed to an increase in maintenance needs, as shown by a correlation between the decrease in microbial activity and viability. Lysis caused by ozonation was associated with a solubilization of 20% of the lyzed cell COD mass. Solubilization yields were of 9.6 and of 1.9 to 3.6 g COD/g O 3 for fresh and aerobically digested sludge, respectively. Design of sludge ozonation processes should account for the variability between the solubilization yield and biodegradability of the various sludge fractions. © IWA Publishing 2011. Source

Discover hidden collaborations