Time filter

Source Type

Joas R.,BiPRO GmbH | Casteleyn L.,Catholic University of Leuven | Biot P.,FPS Health | Kolossa-Gehring M.,Federal Environment Agency | And 8 more authors.
International Journal of Hygiene and Environmental Health | Year: 2012

Human biomonitoring (HBM) can be an effective tool to assess human exposure to environmental pollutants and potential health effects and is increasingly seen as an essential element in a strategy when integrating health and environment. HBM can be used (i) to prioritise actions and measures for policy making; (ii) to evaluate policy actions aimed at reducing exposure to potentially hazardous environmental stressors; and (iii) to promote more comprehensive health impact assessments of policy options.In support of the European Environment and Health Action Plan 2004-2010, European scientists, experts from authorities and other stakeholders joined forces to work towards developing a functional framework and standards for a coherent HBM in Europe.Within the European coordination action on human biomonitoring, 35 partners from 27 European countries in the COPHES consortium aggregated their experiences and expertise and developed harmonized approaches and recommendations for better comparability of HBM data in Europe via the elaboration of a harmonized study protocol. This protocol is the product of discussion and compromises on the selection of environmental exposures, national environmental health concerns, and political and health priorities. The harmonised approach includes sampling recruitment, and analytical procedures, communication strategies and biobanking initiatives. The protocols and the harmonised approach are a means to increase acceptance and policy support and to in the future to enable determination of time trends.The common pilot study protocol will shortly be tested, adapted and assessed in the framework of the DEMOCOPHES in 17 European countries, including 16 EU Member States.COPHES and DEMOCOPHES constitute important steps towards establishing human biomonitoring as a tool for EU environmental and health policy and to improve quantification of exposure of the general European population to existing and emerging pollutants. © 2011. Source

Exley K.,Public Health England | Aerts D.,Federal Public Service Health | Biot P.,Federal Public Service Health | Casteleyn L.,Catholic University of Leuven | And 15 more authors.
Environmental Science and Pollution Research | Year: 2015

Exposure to a number of environmental chemicals in UK mothers and children has been assessed as part of the European biomonitoring pilot study, Demonstration of a Study to Coordinate and Perform Human Biomonitoring on a European Scale (DEMOCOPHES). For the European-funded project, 17 countries tested the biomonitoring guidelines and protocols developed by COPHES. The results from the pilot study in the UK are presented; 21 school children aged 6–11 years old and their mothers provided hair samples to measure mercury and urine samples, to measure cadmium, cotinine and several phthalate metabolites: mono(2-ethyl-5-hydroxyhexyl)phthalate (5OH-MEHP), mono(2-ethyl-5-oxo-hexyl)phthalate (5oxo-MEHP) and mono(2-ethylhexyl)phthalate (MEHP), mono-ethyl phthalate (MEP), mono-iso-butyl phthalate (MiBP), mono-benzyl phthalate (MBzP) and mono-n-butyl phthalate (MnBP). Questionnaire data was collected on environment, health and lifestyle. Mercury in hair was higher in children who reported frequent consumption of fish (geometric mean 0.35 μg/g) compared to those that ate fish less frequently (0.13 μg/g, p = 0.002). Cadmium accumulates with age as demonstrated by higher levels of urinary cadmium in the mothers (geometric mean 0.24 μg/L) than in the children(0.14 μg/L). None of the mothers reported being regular smokers, and this was evident with extremely low levels of cotinine measured (maximum value 3.6 μg/L in mothers, 2.4 μg/L in children). Very low levels of the phthalate metabolites were also measured in both mothers and children (geometric means in mothers: 5OH-MEHP 8.6 μg/L, 5oxo-MEHP 5.1 μg/L, MEHP 1.2 μg/L, MEP 26.8 μg/L, MiBP 17.0 μg/L, MBzP 1.6 μg/L and MnBP 13.5 μg/L; and in children: 5OH-MEHP 18.4 μg/L, 5oxo-MEHP 11.4 μg/L, MEHP 1.4 μg/L, MEP 14.3 μg/L, MiBP 25.8 μg/L, MBzP 3.5 μg/L and MnBP 22.6 μg/L). All measured biomarker levels were similar to or below population-based reference values published by the US National Health and Nutrition Examination Survey (NHANES) and Germany’s GerES surveys. No results were above available health guidance values and were of no concern with regards to health. The framework and techniques learnt here will assist with future work on biomonitoring in the UK. © 2015, Her Majesty the Queen in Right of United Kingdom. Source

Cullen E.,Health Service Executive | Evans D.S.,Health Service Executive | Davidson F.,Public Analysts Laboratory | Burke P.,Public Analysts Laboratory | And 26 more authors.
International Journal of Environmental Research and Public Health | Year: 2014

Background: Monitoring of human exposure to mercury is important due to its adverse health effects. This study aimed to determine the extent of mercury exposure among mothers and their children in Ireland, and to identify factors associated with elevated levels. It formed part of the Demonstration of a study to Coordinate and Perform Human Biomonitoring on a European Scale (DEMOCOPHES) pilot biomonitoring study. Methods: Hair mercury concentrations were determined from a convenience sample of 120 mother/child pairs. Mothers also completed a questionnaire. Rigorous quality assurance within DEMOCOPHES guaranteed the accuracy and international comparability of results. Results: Mercury was detected in 79.2% of the samples from mothers, and 62.5% of children’s samples. Arithmetic mean levels in mothers (0.262 µg/g hair) and children (0.149 µg /g hair) did not exceed the US EPA guidance value. Levels were significantly higher for those with higher education, and those who consumed more fish. Conclusions: The study demonstrates the benefit of human biomonitoring for assessing and comparing internal exposure levels, both on a population and an individual basis. It enables the potential harmful impact of mercury to be minimised in those highly exposed, and can therefore significantly contribute to population health. © 2014 by the authors; licensee MDPI, Basel, Switzerland. Source

Becker K.,Federal Environment Agency UBA | Seiwert M.,Federal Environment Agency UBA | Casteleyn L.,Catholic University of Leuven | Joas R.,BiPRO GmbH | And 15 more authors.
International Journal of Hygiene and Environmental Health | Year: 2014

The objective of COPHES (Consortium to Perform Human biomonitoring on a European Scale) was to develop a harmonised approach to conduct human biomonitoring on a European scale. COPHES developed a systematic approach for designing and conducting a pilot study for an EU-wide cross-sectional human biomonitoring (HBM) study and for the implementation of the fieldwork procedures. The approach gave the basis for discussion of the main aspects of study design and conduct, and provided a decision making tool which can be applied to many other studies. Each decision that had to be taken was listed in a table of options with their advantages and disadvantages. Based on this the rationale of the decisions could be explained and be transparent. This was important because an EU-wide HBM study demands openness of all decisions taken to encourage as many countries as possible to participate and accept the initiative undertaken.Based on this approach the following study design was suggested: a cross-sectional study including 120 children aged 6-11 years and their mothers aged up to 45 years from each participating country. For the pilot study the children should be sampled in equal shares in an urban and a rural location. Only healthy children and mothers (no metabolic disturbances) should be included, who have a sufficient knowledge of the local language and have been living at least for 5 years at the sampling location. Occupational exposure should not be an exclusion criterion. Recruitment should be performed via inhabitant registries or schools as an alternative option. Measures suitable to increase the response rate should be applied. Preferably, the families should be visited at home and interviewed face-to-face. Various quality control measures to guarantee a good fieldwork performance were recommended.This comprehensive overview aims to provide scientists, EU officials, partners and stakeholders involved in the EU implementation process full transparency of the work carried out in COPHES. Thus this report presents the discussion and consensus in COPHES on the main aspects of designing and conducting fieldwork of a human biomonitoring study. Furthermore, it provides an example for a systematic approach that may be useful to other research groups or pan-European research initiatives. In the study protocol that will be published elsewhere these aspects are elaborated and additional aspects are covered (Casteleyn et al., 2012). Meanwhile the respective pilot study DEMOCOPHES had been conducted and assessed. The results and lessons learned will be published elsewhere. © 2013 Elsevier GmbH. Source

Cerna M.,National Institute of Public Health | Cerna M.,Charles University | Maly M.,National Institute of Public Health | Rudnai P.,National Institute of Environmental Health | And 24 more authors.
Environmental Research | Year: 2015

Objective: Phthalates and their metabolites are classified as endocrine modulators. They affect the hormonal balance in both children and adults.The aim of this publication was to compare the urinary levels of phthalate metabolites in selected populations of the Czech Republic (CZ), Slovakia (SK), and Hungary (HU) in relation to the sources of phthalate exposure identified by means of questionnaire (personal care products, floor and wall coverings, plastic toys, and some kinds of foods). Methods: Data were obtained through the twin projects COPHES (COnsortium to Perform Human biomonitoring on a European Scale) and DEMOCOPHES (DEMOnstration of a study to COordinate and Perform Human biomonitoring on a European Scale) from 2009 to 2012. The target groups were children aged 6-11 years old and their mothers up to 45 years of age. The metabolites of phthalates (monomethyl phthalate (MMP), monoethyl phthalate (MEP), monobenzyl phthalate (MBzP), mono-cyclohexyl phthalate (MCHP), mono-(2-ethylhexyl) phthalate (MEHP), mono-(2-ethyl-5-hydroxyhexyl) phthalate (5OH-MEHP), and mono-(2-ethyl-5-oxohexyl) phthalate (5OXO-MEHP)) were analysed in first morning urine samples. After enzymatic glucuronide cleavage, the urine sample analyses were performed using ultra-high-performance liquid chromatography-electrospray ionization tandem mass spectrometry (UHPLC-ESI-MS/MS) in one laboratory that qualified in the External Quality Assessment exercises organised by COPHES. Results: Significant differences in phthalate exposure between countries were revealed for children only but not for mothers. The concentrations of 5-OH-MEHP (P<0.001), 5OXO-MEHP (P<0.001), and their sum (P<0.001) were the highest in SK compared to CZ and HU. The health based guidance values for the sum of DEHP metabolites 5-OH MEHP and 5OXO-MEHP established by the German Commission for biomonitoring of 300. μg/L and 500 μg/L for women adults and children, respectively, were only exceeded in one mother and three boys. A significant difference was also found for MEP (P=0.0149), with the highest concentrations detected in HU. In all countries, the increasing frequency of using personal care products significantly elevated the concentrations of MEP. Conclusion: Some differences were observed between countries in the concentrations of individual urinary phthalate metabolites in children. However, the questionnaire results give no direct explanation for the differences between the countries except the variation in using personal care products. © 2014 Elsevier Inc. Source

Discover hidden collaborations