Needham, MA, United States
Needham, MA, United States

Time filter

Source Type

Brown K.W.,Environmental Health & Engineering Inc. | Minegishi T.,Environmental Health & Engineering Inc. | Cummiskey C.C.,Environmental Health & Engineering Inc. | Fragala M.A.,Environmental Health & Engineering Inc. | And 3 more authors.
Environmental Science and Pollution Research | Year: 2015

Growing awareness of polychlorinated biphenyls (PCBs) in legacy caulk and other construction materials of schools has created a need for information on best practices to control human exposures and comply with applicable regulations. A concise review of approaches and techniques for management of building-related PCBs is the focus of this paper. Engineering and administrative controls that block pathways of PCB transport, dilute concentrations of PCBs in indoor air or other exposure media, or establish uses of building space that mitigate exposure can be effective initial responses to identification of PCBs in a building. Mitigation measures also provide time for school officials to plan a longer-term remediation strategy and to secure the necessary resources. These longer-term strategies typically involve removal of caulk or other primary sources of PCBs as well as nearby masonry or other materials contaminated with PCBs by the primary sources. The costs of managing PCB-containing building materials from assessment through ultimate disposal can be substantial. Optimizing the efficacy and cost-effectiveness of remediation programs requires aligning a thorough understanding of sources and exposure pathways with the most appropriate mitigation and abatement methods. © 2015 Springer-Verlag Berlin Heidelberg


PubMed | Strategic Environmental Services Inc. and Environmental Health & Engineering Inc.
Type: Journal Article | Journal: Environmental science and pollution research international | Year: 2016

Growing awareness of polychlorinated biphenyls (PCBs) in legacy caulk and other construction materials of schools has created a need for information on best practices to control human exposures and comply with applicable regulations. A concise review of approaches and techniques for management of building-related PCBs is the focus of this paper. Engineering and administrative controls that block pathways of PCB transport, dilute concentrations of PCBs in indoor air or other exposure media, or establish uses of building space that mitigate exposure can be effective initial responses to identification of PCBs in a building. Mitigation measures also provide time for school officials to plan a longer-term remediation strategy and to secure the necessary resources. These longer-term strategies typically involve removal of caulk or other primary sources of PCBs as well as nearby masonry or other materials contaminated with PCBs by the primary sources. The costs of managing PCB-containing building materials from assessment through ultimate disposal can be substantial. Optimizing the efficacy and cost-effectiveness of remediation programs requires aligning a thorough understanding of sources and exposure pathways with the most appropriate mitigation and abatement methods.


Dourson M.L.,University of Cincinnati | Chinkin L.R.,Sonoma Technology Inc | MacIntosh D.L.,Environmental Health & Engineering Inc | Finn J.A.,Environmental Health & Engineering Inc | And 3 more authors.
Journal of the Air and Waste Management Association | Year: 2016

Petroleum coke or “petcoke” is a solid material created during petroleum refinement and is distributed via transfer facilities that may be located in densely populated areas. The health impacts from petcoke exposure to residents living in proximity to such facilities were evaluated for a petcoke transfer facilities located in Chicago, Illinois. Site-specific, margin of safety (MOS) and margin of exposure (MOE) analyses were conducted using estimated airborne and dermal exposures. The exposure assessment was based on a combined measurement and modeling program that included multiyear on-site air monitoring, air dispersion modeling, and analyses of soil and surfaces in residential areas adjacent to two petcoke transfer facilities located in industrial areas. Airborne particulate matter less than 10 microns (PM10) were used as a marker for petcoke. Based on daily fence line monitoring, the average daily PM10 concentration at the KCBX Terminals measured on-site was 32 μg/m3, with 89% of 24-hr average PM10 concentrations below 50 μg/m3 and 99% below 100 μg/m3. A dispersion model estimated that the emission sources at the KCBX Terminals produced peak PM10 levels attributed to the petcoke facility at the most highly impacted residence of 11 μg/m3 on an annual average basis and 54 μg/m3 on 24-hr average basis. Chemical indicators of petcoke in soil and surface samples collected from residential neighborhoods adjacent to the facilities were equivalent to levels in corresponding samples collected at reference locations elsewhere in Chicago, a finding that is consistent with limited potential for off-site exposure indicated by the fence line monitoring and air dispersion modeling. The MOE based upon dispersion model estimates ranged from 800 to 900 for potential inhalation, the primary route of concern for particulate matter. This indicates a low likelihood of adverse health effects in the surrounding community.Implications: Handling of petroleum coke at bulk material transfer facilities has been identified as a concern for the public health of surrounding populations. The current assessment, based on measurements and modeling of two facilities located in a densely populated urban area, indicates that petcoke transport and accumulation in off-site locations is minimal. In addition, estimated human exposures, if any, are well below levels that could be anticipated to produce adverse health effects in the general population. © Michael L. Dourson, Lyle R. Chinkin, David L. MacIntosh, Jennifer A. Finn, Kathleen W. Brown, Stephen B. Reid, and Jeanelle M. Martinez.


PubMed | Environmental Health & Engineering Inc
Type: | Journal: Environmental health : a global access science source | Year: 2010

Laboratory research studies indicate that aerosolized influenza viruses survive for longer periods at low relative humidity (RH) conditions. Further analysis has shown that absolute humidity (AH) may be an improved predictor of virus survival in the environment. Maintaining airborne moisture levels that reduce survival of the virus in the air and on surfaces could be another tool for managing public health risks of influenza.A multi-zone indoor air quality model was used to evaluate the ability of portable humidifiers to control moisture content of the air and the potential related benefit of decreasing survival of influenza viruses in single-family residences. We modeled indoor AH and influenza virus concentrations during winter months (Northeast US) using the CONTAM multi-zone indoor air quality model. A two-story residential template was used under two different ventilation conditions - forced hot air and radiant heating. Humidity was evaluated on a room-specific and whole house basis. Estimates of emission rates for influenza virus were particle-size specific and derived from published studies and included emissions during both tidal breathing and coughing events. The survival of the influenza virus was determined based on the established relationship between AH and virus survival.The presence of a portable humidifier with an output of 0.16 kg water per hour in the bedroom resulted in an increase in median sleeping hours AH/RH levels of 11 to 19% compared to periods without a humidifier present. The associated percent decrease in influenza virus survival was 17.5 - 31.6%. Distribution of water vapor through a residence was estimated to yield 3 to 12% increases in AH/RH and 7.8-13.9% reductions in influenza virus survival.This modeling analysis demonstrates the potential benefit of portable residential humidifiers in reducing the survival of aerosolized influenza virus by controlling humidity indoors.


PubMed | Environmental Health & Engineering Inc.
Type: Journal Article | Journal: The Journal of asthma : official journal of the Association for the Care of Asthma | Year: 2014

Many interventions to reduce allergen levels in the home are recommended to asthma and allergy patients. One that is readily available and can be highly effective is the use of high performing filters in forced air ventilation systems.We conducted a modeling analysis of the effectiveness of filter-based interventions in the home to reduce airborne asthma and allergy triggers. This work used each pass removal efficiency applied to health-relevant size fractions of particles to assess filter performance. We assessed effectiveness for key allergy and asthma triggers based on applicable particle sizes for cat allergen, indoor and outdoor sources of particles <2.5m in diameter (PM2.5), and airborne influenza and rhinovirus.Our analysis finds that higher performing filters can have significant impacts on indoor particle pollutant levels. Filters with removal efficiencies of >70% for cat dander particles, fine particulate matter (PM2.5) and respiratory virus can lower concentrations of those asthma triggers and allergens in indoor air of the home by >50%. Very high removal efficiency filters, such as those rated a 16 on the nationally recognized Minimum Efficiency Removal Value (MERV) rating system, tend to be only marginally more effective than MERV12 or 13 rated filters.The results of this analysis indicate that use of a MERV12 or higher performing air filter in home ventilation systems can effectively reduce indoor levels of these common asthma and allergy triggers. These reductions in airborne allergens in turn may help reduce allergy and asthma symptoms, especially if employed in conjunction with other environmental management measures recommended for allergy and asthma patients.


PubMed | Environmental Health & Engineering Inc
Type: Journal Article | Journal: Journal of occupational and environmental medicine | Year: 2011

To assess the effect of fine particulate matter (PM(2.5)) from different particle sources on tumor necrosis factor- (TNF-) , we measured TNF production from rat alveolar macrophages (AM) and human dendritic cells (DC) exposed to PM(2.5) from different sources.Fire-related PM(2.5) samples, rural ambient, and urban indoor and outdoor samples were collected in the Southeast United States. Tumor necrosis factor release was measured from rat AM and human DC following incubation with PM(2.5).Tumor necrosis factor release in AMs was greatest for fire-related PM(2.5) compared with other samples (TNF: P value = 0.005; mortality: P value = 0.005). Tumor necrosis factor releases from the DCs and AMs exposed to fire-associated PM(2.5) were strongly correlated (r = 0.87, P value < 0.0001).Particulate matter exposure produces TNF release consistent with pulmonary inflammation in rat AMs and human DCs, with the response in rat AMs differing by particle source.


PubMed | Environmental Health & Engineering Inc
Type: | Journal: Environmental health : a global access science source | Year: 2012

Sealants and other building materials sold in the U.S. from 1958 - 1971 were commonly manufactured with polychlorinated biphenyls (PCBs) at percent quantities by weight. Volatilization of PCBs from construction materials has been reported to produce PCB levels in indoor air that exceed health protective guideline values. The discovery of PCBs in indoor air of schools can produce numerous complications including disruption of normal operations and potential risks to health. Understanding the dynamics of building-related PCBs in indoor air is needed to identify effective strategies for managing potential exposures and risks. This paper reports on the efficacy of selected engineering controls implemented to mitigate concentrations of PCBs in indoor air.Three interventions (ventilation, contact encapsulation, and physical barriers) were evaluated in an elementary school with PCB-containing caulk and elevated PCB concentrations in indoor air. Fluorescent light ballasts did not contain PCBs. Following implementation of the final intervention, measurements obtained over 14 months were used to assess the efficacy of the mitigation methods over time as well as temporal variability of PCBs in indoor air.Controlling for air exchange rates and temperature, the interventions produced statistically significant (p < 0.05) reductions in concentrations of PCBs in indoor air of the school. The mitigation measures remained effective over the course of the entire follow-up period. After all interventions were implemented, PCB levels in indoor air were associated with indoor temperature. In a broken-stick regression model with a node at 20 C, temperature explained 79% of the variability of indoor PCB concentrations over time (p < 0.001).Increasing outdoor air ventilation, encapsulating caulk, and constructing a physical barrier over the encapsulated material were shown to be effective at reducing exposure concentrations of PCBs in indoor air of a school and also preventing direct contact with PCB caulk. In-place management methods such as these avoid the disruption and higher costs of demolition, disposal and reconstruction required when PCB-containing building materials are removed from a school. Because of the influence of temperature on indoor air PCB levels, risk assessment results based on short-term measurements, e.g., a single day or season, may be erroneous and could lead to sub-optimal allocation of resources.


PubMed | Environmental Health & Engineering Inc.
Type: Evaluation Studies | Journal: American journal of infection control | Year: 2012

Elevated percent positivity (30%) of Legionella in hospital domestic water systems has been suggested as a metric for assessing the risk of health care-acquired Legionnaires disease (LD).We examined the validity of this metric by analyzing data from peer-reviewed studies containing reports of Legionella prevalence in hospital water (ie, percent positivity) and temporally matched reports of patients with health care-acquired LD.Our literature review identified 31 peer-reviewed publications reporting matched data. We abstracted a total of 206 data points, representing 119 hospitals, from these articles. We determined that the proposed 30% positivity metric has 59% sensitivity and 74% specificity (ie, a 41% false-negative rate and a 26% false-positive rate). These notable error rates could have significant implications, given that we identified 16 peer-reviewed articles and 6 government guidance documents that referenced the 30% positivity metric as a risk assessment tool.Environmental sampling of hospital water distribution systems for Legionella can be an important component of risk management for LD. However, the possible consequence of using a percent positivity metric with low sensitivity and specificity is that many hospitals might fail to mitigate when a true risk is present, or might unnecessarily allocate limited resources to deal with a negligible risk.


PubMed | Environmental Health & Engineering Inc.
Type: | Journal: The Science of the total environment | Year: 2012

In December 2008, the U.S. Consumer Product Safety Commission (CPSC) began receiving reports about odors, corrosion, and health concerns related to drywall originating from China. In response, a detailed environmental health and engineering evaluation was conducted of 41 complaint and 10 non-complaint homes in the Southeast U.S. Each home investigation included characterization of: 1) drywall composition; 2) indoor and outdoor air quality; 3) temperature, moisture, and building ventilation; and 4) copper and silver corrosion rates. Complaint homes had significantly higher hydrogen sulfide concentrations (mean 0.82 vs.


PubMed | Environmental Health & Engineering Inc.
Type: Journal Article | Journal: Journal of exposure science & environmental epidemiology | Year: 2010

Health risks of fine particle air pollution (PM(2.5)) are an important public health concern that has the potential to be mitigated in part by interventions such as air cleaning devices that reduce personal exposure to ambient PM(2.5). To characterize exposure to ambient PM(2.5) indoors as a function of residential air cleaners, a multi-zone indoor air quality model was used to integrate spatially resolved data on housing, meteorology, and ambient PM(2.5), with performance testing of residential air cleaners to estimate short-term and annual average PM(2.5) of outdoor origin inside residences of three metropolitan areas. The associated public health impacts of reduced ambient PM(2.5) exposure were estimated using a standard health impact assessment methodology. Estimated indoor levels of ambient PM(2.5) varied substantially among ventilation and air cleaning configurations. The median 24-h average indoor-outdoor ratio of ambient PM(2.5) was 0.57 for homes with natural ventilation, 0.35 for homes with central air conditioning (AC) with conventional filtration, and 0.1 for homes with central AC with high efficiency in-duct air cleaner. Median modeled 24-h average indoor concentrations of PM(2.5) of outdoor origin for those three configurations were 8.4, 5.3, and 1.5 microg/m(3), respectively. The potential public health benefits of reduced exposure to ambient PM(2.5) afforded by air cleaning systems were substantial. If the entire population of single-family homes with central AC in the modeling domain converted from conventional filtration to high-efficiency in-duct air cleaning, the change in ambient PM(2.5) exposure is estimated to result in an annual reduction of 700 premature deaths, 940 hospital and emergency room visits, and 130,000 asthma attacks in these metropolitan areas. In addition to controlling emissions from sources, high-efficiency whole-house air cleaner are expected to reduce exposure to particles of outdoor origin and are projected to be an effective means of managing public health impacts of ambient particle pollution.

Loading Environmental Health & Engineering Inc. collaborators
Loading Environmental Health & Engineering Inc. collaborators