Environmental Company of Sao Paulo State CETESB

São Paulo, Brazil

Environmental Company of Sao Paulo State CETESB

São Paulo, Brazil
SEARCH FILTERS
Time filter
Source Type

Nascimento T.,University of Sao Paulo | Cantamessa R.,University of Sao Paulo | Melo L.,University of Sao Paulo | Lincopan N.,University of Sao Paulo | And 5 more authors.
Science of the Total Environment | Year: 2017

The emergence of high-risk clones of multidrug-resistant (MDR) bacteria in aquatic environments has generated an important public health problem, creating an urgent need to strengthen surveillance. This study reports the occurrence of clinically significant MDR Enterobacteriaceae and non-fermentative bacteria carrying carbapenemases (KPC-2), extended-spectrum β-lactamases (CTX-M) and plasmid-mediated quinolone resistance (PMQR) genes in urban lakes and reservoirs, in Southeastern Brazil. In this regard, the detection of hospital-associated lineages of KPC-2-producing Klebsiella pneumoniae belonging to the international clonal complex CC258 (ST11) and CTX-M-15-producing Escherichia coli belonging to the international CC10 (ST617), in an urban lake, is reported for the first time. Whole genome sequencing (WGS) analysis of KPC-2-producing K. pneumoniae ST11 revealed that blaKPC-2 gene was carried by an IncN plasmid on a Tn4401b element. This study support that aquatic environments with public access can act as reservoirs of clinically important MDR bacteria, constituting a potential risk to human and animal health. On the other hand, the detection of high-risk clones highlights the extra-hospital spread of clinically significant bacteria into urban aquatic environments. © 2017 Elsevier B.V.


Ichiwaki S.,University of Sao Paulo | Costa A.C.M.M.,University of Sao Paulo | Silva E.G.,University of Sao Paulo | Rada L.R.M.,University of Sao Paulo | And 6 more authors.
Genome Announcements | Year: 2017

The genus Micromonospora comprises actinomycetes with high biotechnological potential, due to their ability to produce secondary metabolites and enzymes. In this study, we report the draft genome sequence of Micromonospora sp. NBS 11-29, which showed antibacterial, cellulolytic, and xylanolytic activities under in vitro conditions. © 2017 Ichiwaki et al.


Lamparelli C.C.,Environmental Company of Sao Paulo State CETESB | Pogreba-Brown K.,University of Arizona | Verhougstraete M.,University of Arizona | Sato M.I.Z.,Environmental Company of Sao Paulo State CETESB | And 3 more authors.
Water Research | Year: 2015

Regulating recreational water exposure to pathogens within the tropics is a major public health and economic concern. Although numerous epidemiological studies estimating the risk to recreational marine water exposure have been conducted since the 1950s, few studies have been done in the tropics. Furthermore, many have suggested that the use of fecal indicator bacteria for monitoring recreational water quality in temperate regions is not appropriate in the tropics. We analyzed a large cohort study of five beaches in Sao Paulo, Brazil, conducted during consecutive weekends in the summer of 1999 that estimated risk to water, sand, and food exposures. Enterococci and Escherichia coli concentrations were measured each day of the study. Elevated risks were estimated for both swimming (OR = 1.36 95% CI: 1.05-1.58) and sand contact (OR = 1.29 95% CI 1.05-1.58). A 1 log increase in enterococci concentration was associated with an 11% increase in risk (OR = 1.11 95% CI: 1.04-1.19). For E. coli a 1-log increase in concentration was associated with 19% increase in risk (OR = 1.19 95% CI: 1.14-1.28). Most countries with beaches in the tropics are lower or middle income countries (LMIC) and rely on tourism as a major source of income. We present data that suggests fecal indicator bacteria such as enterococci are an appropriate indicator of risk in tropical urban settings where contamination is coming from predominantly human sources. Additional studies in tropical settings could help inform and refine guidelines for safe use of recreational waters. © 2015 Elsevier Ltd.


Dropa M.,University of Sao Paulo | Lincopan N.,University of Sao Paulo | Balsalobre L.C.,University of Sao Paulo | Oliveira D.E.,University of Sao Paulo | And 6 more authors.
Environmental Science and Pollution Research | Year: 2016

The release of extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae to the environment is a public health issue worldwide. The aim of this study was to investigate the genetic background of genes encoding ESBLs in wastewater treatment plants (WWTPs) in São Paulo, southeastern Brazil. In 2009, during a local surveillance study, seven ESBL-producing Enterobacteriaceae strains were recovered from five WWTPs and screened for ESBL genes and mobile genetic elements. Multilocus sequence typing (MLST) was carried out, and wild plasmids were transformed into electrocompetent Escherichia coli. S1-PFGE technique was used to verify the presence of high molecular weight plasmids in wild-type strains and in blaESBL-containing E. coli transformants. Strains harbored blaCTX-M-8, blaCTX-M-15, and/or blaSHV-28. Sequencing results showed that blaCTX-M-8 and blaCTX-M-15 genes were associated with IS26. MLST revealed new sequence types for E. coli (ST4401, ST4402, ST4403, and ST4445) and Klebsiella pneumoniae (ST1574), except for one K. pneumoniae from ST307 and Enterobacter cloacae from ST131. PCR and S1-PFGE results showed CTX-M-producing E. coli transformants carried heavy plasmids sizing 48.5–209 kb, which belonged to IncI1, IncF, and IncM1 incompatibility groups. This is the first report of CTX-M-8 and SHV-28 enzymes in environmental samples, and the present results demonstrate the plasmid-mediated spread of CTX-M-encoding genes through five WWTPs in São Paulo, Brazil, suggesting WWTPs are hotspots for the transfer of ESBL genes and confirming the urgent need to improve the management of sewage in order to minimize the dissemination of resistance genes to the environment. © 2016 Springer-Verlag Berlin Heidelberg


Pinto K.C.,Environmental Company of Sao Paulo State CETESB | Hachich E.M.,Environmental Company of Sao Paulo State CETESB | Sato M.I.Z.,Environmental Company of Sao Paulo State CETESB | Di Bari M.,Environmental Company of Sao Paulo State CETESB | And 4 more authors.
Water Science and Technology | Year: 2012

This study aimed to assess the sanitary quality of water, and wet and dry sand from three beaches located in the South Coast region of São Paulo State, Brazil, selected taking into account the frequency of tourists and the water quality (good, fair and poor). Thirty-six water samples each of wet and dry sand and seawater were collected monthly over a period of one year and analyzed for fecal indicator bacteria (FIB: thermotolerant coliforms, Escherichia coli, and enterococci), presumptive Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans and dermatophytes. The results revealed FIB concentrations more elevated in dry sand followed by wet sand and water. P. aeruginosa and presumptive S. aureus were detected with a similar frequency in water and sand samples, but maximum concentrations and geometric means were higher in dry sand. C. albicans was detected only in water samples whereas the dermatophyte Microsporum sp. was isolated exclusively from dry and wet sand samples. This evaluation showed also that the environment had a significant influence on P. aeruginosa but not on presumptive S. aureus concentrations. According to threshold values proposed in the literature for E. coli and enterococci dry sand densities, none of the beaches would be considered of sufficient quality for recreational activities. © IWA Publishing 2012.


PubMed | U.S. Environmental Protection Agency, University of Michigan, Environmental Company of Sao Paulo State CETESB and University of Arizona
Type: | Journal: Water research | Year: 2015

Regulating recreational water exposure to pathogens within the tropics is a major public health and economic concern. Although numerous epidemiological studies estimating the risk to recreational marine water exposure have been conducted since the 1950s, few studies have been done in the tropics. Furthermore, many have suggested that the use of fecal indicator bacteria for monitoring recreational water quality in temperate regions is not appropriate in the tropics. We analyzed a large cohort study of five beaches in Sao Paulo, Brazil, conducted during consecutive weekends in the summer of 1999 that estimated risk to water, sand, and food exposures. Enterococci and Escherichia coli concentrations were measured each day of the study. Elevated risks were estimated for both swimming (OR = 1.36 95% CI: 1.05-1.58) and sand contact (OR = 1.29 95% CI 1.05-1.58). A 1 log increase in enterococci concentration was associated with an 11% increase in risk (OR = 1.11 95% CI: 1.04-1.19). For E. coli a 1-log increase in concentration was associated with 19% increase in risk (OR = 1.19 95% CI: 1.14-1.28). Most countries with beaches in the tropics are lower or middle income countries (LMIC) and rely on tourism as a major source of income. We present data that suggests fecal indicator bacteria such as enterococci are an appropriate indicator of risk in tropical urban settings where contamination is coming from predominantly human sources. Additional studies in tropical settings could help inform and refine guidelines for safe use of recreational waters.


PubMed | Environmental Company of Sao Paulo State CETESB and University of Sao Paulo
Type: Journal Article | Journal: Environmental science and pollution research international | Year: 2016

The release of extended-spectrum -lactamase (ESBL)-producing Enterobacteriaceae to the environment is a public health issue worldwide. The aim of this study was to investigate the genetic background of genes encoding ESBLs in wastewater treatment plants (WWTPs) in So Paulo, southeastern Brazil. In 2009, during a local surveillance study, seven ESBL-producing Enterobacteriaceae strains were recovered from five WWTPs and screened for ESBL genes and mobile genetic elements. Multilocus sequence typing (MLST) was carried out, and wild plasmids were transformed into electrocompetent Escherichia coli. S1-PFGE technique was used to verify the presence of high molecular weight plasmids in wild-type strains and in bla ESBL-containing E. coli transformants. Strains harbored bla CTX-M-8, bla CTX-M-15, and/or bla SHV-28. Sequencing results showed that bla CTX-M-8 and bla CTX-M-15 genes were associated with IS26. MLST revealed new sequence types for E. coli (ST4401, ST4402, ST4403, and ST4445) and Klebsiella pneumoniae (ST1574), except for one K. pneumoniae from ST307 and Enterobacter cloacae from ST131. PCR and S1-PFGE results showed CTX-M-producing E. coli transformants carried heavy plasmids sizing 48.5-209 kb, which belonged to IncI1, IncF, and IncM1 incompatibility groups. This is the first report of CTX-M-8 and SHV-28 enzymes in environmental samples, and the present results demonstrate the plasmid-mediated spread of CTX-M-encoding genes through five WWTPs in So Paulo, Brazil, suggesting WWTPs are hotspots for the transfer of ESBL genes and confirming the urgent need to improve the management of sewage in order to minimize the dissemination of resistance genes to the environment.

Loading Environmental Company of Sao Paulo State CETESB collaborators
Loading Environmental Company of Sao Paulo State CETESB collaborators