Time filter

Source Type

Khan N.,University of South Australia | Clark I.,University of South Australia | Sanchez-Monedero M.A.,CSIC - Center of Edafology and Applied Biology of the Segura | Shea S.,Environmental and Natural Resource Management Consultants Pty Ltd | And 5 more authors.
Chemosphere | Year: 2016

Two experiments were conducted where three biochars, made from macadamia nutshell (MS), hardwood shaving (WS) and chicken litter (CL), were co-composted with chicken manure and sawdust, and also incubated with a chicken litter based commercial compost. Biochars were added at the rates of 5% and 10% in the co-composting and 10% and 20% in the incubation experiment. The rates of biochar had no consistent effect on the change in element contents of composted- or incubated-biochars. The biochar C demonstrated recalcitrance in both composting and incubation systems. Composting increased the CEC of biochars probably due to thermophilic oxidation. The increases in CEC of WS and CL were 6.5 and 2.2 times, respectively, for composting. Translocation of elements, between biochar and compost medium, occurred in both directions. In most cases, biochars gained elements under the influence of positive difference of concentrations (i.e., when compost medium had higher concentration of elements than biochar), while in some cases they lost elements despite a positive difference. Biochar lost some elements (WS: B; CL: B, Mg and S) under the influence of negative difference of concentrations. Some biochars showed strong affinity for B, C, N and S: the concentration of these elements gained by biochars surpassed the concentration in the respective composting medium. The material difference in the biochars did not have influence on N retention: all three netbag-biochars increased their N content. The cost of production of biochar-compost will be lower in co-composting than incubation, which involves two separate processes, i.e., composting and subsequent incubation. © 2015 Elsevier Ltd.


Khan N.,University of South Australia | Clark I.,University of South Australia | Sanchez-Monedero M.A.,CSIC - Center of Edafology and Applied Biology of the Segura | Shea S.,Environmental and Natural Resource Management Consultants Pty Ltd | And 2 more authors.
Bioresource Technology | Year: 2014

Several maturity indices were evaluated for in-vessel co-composting of chicken manure and pine sawdust with three different biochars. All the seven mixtures (piles) contained chicken manure and sawdust. Six of these piles contained biochar; each biochar was added at two rates, 5% and 10% wet weight. The maturity of composts was assessed by C/N, dissolved organic carbon (DOC), seed germination, NO3 --N/NH4 +-N, and the Solvita test. The C/N values of finished composts were from 31.5 to 35.7, which were much higher than the optimum value of 21 for matured compost. Nevertheless, the rest of the parameters indicated that the composts were matured. The C/N values were high because of the high amount of recalcitrant carbon present in the feedstocks: biochar and sawdust. Biochar treated piles showed higher respiration as well as decomposition of DOC indicating higher microbial activity. Use of biochar in composting may reduce NH3 emission and nitrate leaching. © 2014 Elsevier Ltd.


Khan N.,University of South Australia | Clark I.,University of South Australia | Bolan N.,University of Newcastle | Meier S.,University of the Frontier | And 6 more authors.
Journal of Soils and Sediments | Year: 2016

Purpose: The purpose was to develop a netbag technique suitable for burying biochar in a compost or composting medium, followed by its collection in a clean state (i.e., free of compost debris) without loss or damage, for physicochemical analyses. Collection in a clean state is required to ensure that the analytical data of various biochars are representative and comparable. Five criteria were identified to evaluate the suitability of netbag. Materials and methods: A small netbag (3.5 × 3.5 cm) was developed using nylon fabric (30-μm mesh) to contain ∼1 g of biochar. A production system was developed to make 15 netbags per batch. Unlike commonly used litterbags, polypropylene was used to seal netbags. Two experiments were conducted in which three biochars, made from macadamia nutshell, hardwood shaving, and chicken litter, were co-composted with chicken manure and sawdust and also incubated with a chicken litter-based commercial compost. Biochars were added at the rates of 5 or 10 % in the co-composting and 10 or 20 % in the incubation experiments. The biochar-containing netbags were buried in the co-composting and incubation mediums for 133 days. Various physicochemical analyses were conducted with netbag-biochars and their compost mediums. Results and discussion: The netbags collected after both experiments showed no visible sign of degradation. The weight of netbag-biochars from co-composting and incubation systems did not reduce significantly over the experimental period, thereby indicating no loss of biochar. No visible evidence of entry of solid particles from compost medium was found on the netbag-biochars. Pretests indicated that the netbag and biochars absorbed pore solution from the medium. Findings showed that elements translocated between the netbag-biochar and compost medium. A colony of coccus bacteria was found on the surface of composted chicken litter biochar, denoting probable entry of bacteria from compost medium. Unlike conventional litterbags, the netbags were suitable for burying and extracting biochar in compost/composting mediums due to smaller size, smaller mesh, and strong sealing with polypropylene. Conclusions: The netbags addressed all the five criteria. Therefore, it was concluded that, in the co-compost or incubated-compost medium, the biochar retained in the netbag and the biochar mixed with the medium were exposed to a similar bio-oxidative environment, and netbag-biochar represents the biochar in the medium. This means that these netbags can be used as a convenient means to examine the effects of the composting process or incubation in compost on biochar. © 2016 Springer-Verlag Berlin Heidelberg


PubMed | University of Newcastle, University of South Australia, University of the Frontier, Environmental and Natural Resource Management Consultants Pty Ltd and 2 more.
Type: | Journal: Chemosphere | Year: 2015

Two experiments were conducted where three biochars, made from macadamia nutshell (MS), hardwood shaving (WS) and chicken litter (CL), were co-composted with chicken manure and sawdust, and also incubated with a chicken litter based commercial compost. Biochars were added at the rates of 5% and 10% in the co-composting and 10% and 20% in the incubation experiment. The rates of biochar had no consistent effect on the change in element contents of composted- or incubated-biochars. The biochar C demonstrated recalcitrance in both composting and incubation systems. Composting increased the CEC of biochars probably due to thermophilic oxidation. The increases in CEC of WS and CL were 6.5 and 2.2 times, respectively, for composting. Translocation of elements, between biochar and compost medium, occurred in both directions. In most cases, biochars gained elements under the influence of positive difference of concentrations (i.e., when compost medium had higher concentration of elements than biochar), while in some cases they lost elements despite a positive difference. Biochar lost some elements (WS: B; CL: B, Mg and S) under the influence of negative difference of concentrations. Some biochars showed strong affinity for B, C, N and S: the concentration of these elements gained by biochars surpassed the concentration in the respective composting medium. The material difference in the biochars did not have influence on N retention: all three netbag-biochars increased their N content. The cost of production of biochar-compost will be lower in co-composting than incubation, which involves two separate processes, i.e., composting and subsequent incubation.

Loading Environmental and Natural Resource Management Consultants Pty Ltd collaborators
Loading Environmental and Natural Resource Management Consultants Pty Ltd collaborators