Pécs, Hungary
Pécs, Hungary

Time filter

Source Type

PubMed | University of Pécs, Enviroinvest Corporation, University of Pannonia, University of Szeged and Institute of Biophysics
Type: | Journal: Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases | Year: 2016

Walnut blight caused by Xanthomonas arboricola pv. juglandis (Xaj) is one of the most frequent infective diseases of walnut, resulting in serious economic losses. One potential solution to control this disease could be the application of bacteriophages. In this study, 24 phages were isolated from soil and walnut aerial tissues infected with Xaj. Two polyvalent bacteriophages, Xaj2 and Xaj24 were chosen for further characterization including their morphological, physiological and genomic analyses. Xaj2 was classified as Siphoviridae whereas Xaj24 belonged to the Podoviridae family. Both phages demonstrated lytic effect on Xaj in laboratory trials. Complete genomes of Xaj2 and Xaj24 were determined. Genomes of Xaj2 and Xaj24 consisted of 49.241 and 44.861 nucleotides encoding 80 and 53 genes, respectively. Comparative genome analyses have revealed that Xaj2 had a unique genome sequence, while Xaj24 was a phiKMV-like phage and it was most similar to the Prado phage which is virulent for Xylella fastidiosa and Xanthomonas spp. In this study, we present the first two complete Xaj phage sequences enabling an insight into the genomics of Xaj phages.


PubMed | Chinese Academy of Agricultural Sciences, Mendel University in Brno and Enviroinvest Co.
Type: Journal Article | Journal: PloS one | Year: 2016

The appearance of somaclonal variability induced by in vitro cultivation is relatively frequent and can, in some cases, provide a valuable source of new genetic variation for crop improvement. The cause of this phenomenon remains unknown; however, there are a number of reports suggesting that epigenetics, including DNA methylations, are an important factor. In addition to the non-heritable DNA methylation changes caused by transient and reversible stress-responsive gene regulation, recent evidence supports the existence of mitotically and meiotically inherited changes. The induction of phenotypes via stable DNA methylation changes has occasionally great economical value; however, very little is known about the genetic or molecular basis of these phenotypes. We used a novel approach consisting of a standard MSAP analysis followed by deep amplicon sequencing to better understand this phenomenon. Our models included two wheat genotypes, and their somaclones induced using in vitro cultivation with a changed heritable phenotype (shortened stem height and silenced high molecular weight glutenin). Using this novel procedure, we obtained information on the dissimilarity of DNA methylation landscapes between the standard cultivar and its respective somaclones, and we extracted the sequences and genome regions that were differentially methylated between subjects. Transposable elements were identified as the most likely factor for producing changes in somaclone properties. In summary, the novel approach of combining MSAP and NGS is relatively easy and widely applicable, which is a rather unique feature compared with the currently available techniques in the epigenetics field.


Meczker K.,Enviroinvest Corporation | Domotor D.,Enviroinvest Corporation | Vass J.,Enviroinvest Corporation | Rakhely G.,University of Szeged | And 3 more authors.
FEMS Microbiology Letters | Year: 2014

The enterobacterium Erwinia amylovora is the causal agent of fire blight. This study presents the analysis of the complete genome of phage PhiEaH1, isolated from the soil surrounding an E. amylovora-infected apple tree in Hungary. Its genome is 218 kb in size, containing 244 ORFs. PhiEaH1 is the second E. amylovora infecting phage from the Siphoviridae family whose complete genome sequence was determined. Beside PhiEaH2, PhiEaH1 is the other active component of Erwiphage, the first bacteriophage-based pesticide on the market against E. amylovora. Comparative genome analysis in this study has revealed that PhiEaH1 not only differs from the 10 formerly sequenced E. amylovora bacteriophages belonging to other phage families, but also from PhiEaH2. Sequencing of more Siphoviridae phage genomes might reveal further diversity, providing opportunities for the development of even more effective biological control agents, phage cocktails against Erwinia fire blight disease of commercial fruit crops. The significant difference in genome sequence of the Erwinia amylovora bacteriophage PhiEaH1, which is a component of the firstly marketed phage-based pesticide against fireblight, from other Erwinia phages suggests a strategy for improving biological control against fire blight disease of commercial crops. © 2013 Federation of European Microbiological Societies.


Beke S.,Italian Institute of Technology | Barenghi R.,CNR Institute of Neuroscience | Farkas B.,Italian Institute of Technology | Romano I.,Italian Institute of Technology | And 4 more authors.
Materials Science and Engineering C | Year: 2014

The development of bioactive materials is in the premise of tissue engineering. For several years, surface functionalization of scaffolds has been one of the most promising approaches to stimulate cellular activity and finally improve implant success. Herein, we describe the development of a bioactive composite scaffold composed of a biodegradable photopolymer scaffold and titanate nanotubes (TNTs). The biodegradable photopolymer scaffolds were fabricated by applying mask-projection excimer laser photocuring at 308 nm. TNTs were synthesized and then spin-coated on the porous scaffolds. Upon culturing fibroblast cells on scaffolds, we found that nanotubes coating affects cell viability and proliferation demonstrating that TNT coatings enhance cell growth on the scaffolds by further improving their surface topography. © 2014 Elsevier B.V. All rights reserved.


Beke S.,Italian Institute of Technology | Korosi L.,Enviroinvest Corporation | Scarpellini A.,Italian Institute of Technology | Anjum F.,Italian Institute of Technology | Brandi F.,Italian Institute of Technology
Materials Science and Engineering C | Year: 2013

Rigid, biodegradable photopolymer scaffolds were coated with titanate nanotubes (TNTs) by using a spin-coating method. TNTs were synthesized by a hydrothermal process at 150 C under 4.7 bar ambient pressure. The biodegradable photopolymer scaffolds were produced by mask-assisted excimer laser photocuring at 308 nm. For scaffold coating, a stable ethanolic TNT sol was prepared by a simple colloid chemical route without the use of any binding compounds or additives. Scanning electron microscopy along with elemental analysis revealed that the scaffolds were homogenously coated by TNTs. The developed TNT coating can further improve the surface geometry of fabricated scaffolds, and therefore it can further increase the cell adhesion. © 2013 Elsevier B.V.


Beke S.,Italian Institute of Technology | Korosi L.,Enviroinvest Corporation | Nanai L.,University of Szeged | Brandi F.,Italian Institute of Technology
Vacuum | Year: 2012

This study aims to analyze the elemental composition, and temporal- and spatial distributions of vanadium atoms and ions in the laser-induced vanadium oxide plasma under high vacuum using optical emission spectroscopy. Neutral atoms and singly charged V ions were detected under high vacuum in the emission spectra. The mean translational velocity of neutral V atoms in their first 25 mm propagation was estimated to be 15.7 km/s using the temporal- and spatial dynamics investigation of neutral V species in the plasma. © 2012 Elsevier Ltd. All rights reserved.


Schneider G.,University of Pécs | Kovacs T.,Enviroinvest Corporation | Rakhely G.,University of Szeged | Rakhely G.,Hungarian Academy of Sciences | Czeller M.,U-Systems
Applied Microbiology and Biotechnology | Year: 2016

Recent progress in microbial fuel cell (MFC) technology has highlighted the potential of these devices to be used as biosensors. The advantages of MFC-based biosensors are that they are phenotypic and can function in either assay- or flow-through formats. These features make them appropriate for contiguous on-line monitoring in laboratories and for in-field applications. The selectivity of an MFC biosensor depends on the applied microorganisms in the anodic compartment where electron transfer (ET) between the artificial surface (anode) and bacterium occurs. This process strongly determines the internal resistance of the sensoric system and thus influences signal outcome and response time. Despite their beneficial characteristics, the number of MFC-based biosensoric applications has been limited until now. The aim of this mini-review is to turn attention to the biosensoric potential of MFCs by summarizing ET mechanisms on which recently established and future sensoric devices are based. © 2016, Springer-Verlag Berlin Heidelberg.


PubMed | University of Pécs, Enviroinvest Corporation, University of Szeged and U-Systems
Type: Journal Article | Journal: Applied microbiology and biotechnology | Year: 2016

Recent progress in microbial fuel cell (MFC) technology has highlighted the potential of these devices to be used as biosensors. The advantages of MFC-based biosensors are that they are phenotypic and can function in either assay- or flow-through formats. These features make them appropriate for contiguous on-line monitoring in laboratories and for in-field applications. The selectivity of an MFC biosensor depends on the applied microorganisms in the anodic compartment where electron transfer (ET) between the artificial surface (anode) and bacterium occurs. This process strongly determines the internal resistance of the sensoric system and thus influences signal outcome and response time. Despite their beneficial characteristics, the number of MFC-based biosensoric applications has been limited until now. The aim of this mini-review is to turn attention to the biosensoric potential of MFCs by summarizing ET mechanisms on which recently established and future sensoric devices are based.


PubMed | University of Pécs, Enviroinvest Corporation, Bioplex Research and Development Ltd. and R.V.M Engineer Ltd.
Type: | Journal: Enzyme and microbial technology | Year: 2015

Beta-lactam antibiotics comprise the largest group of antibacterial agents. Due to their bactericidal properties and limited toxicity to humans they are preferred in antimicrobial therapy. In most cases, therapy is empiric since susceptibility testing in diagnostic laboratories takes a relatively long time. This paper presents a novel platform that is based on the microbial fuel cell (MFC) technology and focuses on the early antibiogram determination of isolates against a series of beta-lactam antibiotics. An advantage of the system is that it can be integrated into traditional microbiological diagnostic laboratory procedures. Tested bacterium suspensions are uploaded into the anodic chambers of each miniaturized MFC unit integrated into a panel system, containing different antibiotic solutions. Electronic signals gained in each MFC unit are continuously monitored and are proportional to the metabolic activity of the presenting test bacterium. Using this method, antibiotic susceptibility can be evaluated in 2-4h after inoculation. Hereby we demonstrate the efficacy of the platform in antibiogram determination by testing the susceptibilities of Escherichia coli strain ATCC 25922 and Staphylococcus aureus strain ATCC 29213 against 10 beta-lactam antibiotics (penicillin, ampicillin, ticarcillin, cefazolin, cefuroxime, cefoperazone, cefepime, cefoxitin, cefaclor, imipenem). This paper also presents the construction of the background instrumentation and the panel system into which a printed circuit board (PCB) based electrode was integrated. Our results suggest that MFC based biosensors have the potential to be used in diagnostics for antibiogram determination.


The in situ observation of cell movements and morphological parameters over longer periods of time under physiological conditions is critical in basic cell research and biomedical applications. The quantitative phase-contrast microscope applied in this study has a remarkably small size, therefore it can be placed directly into a humidified incubator. Here, we report on the successful application of this M4 Holomonitor to observe cancer cell motility, motility speed, and migration in the presence of the green tea polyphenol, epigallocatechin gallate, as well as to monitor the adhesion of preosteoblast cells on nanostructured titanate coatings, relevant for biomedical applications. A special mechanical stage was developed to position the sample into that range of the optical arrangement where digital autofocusing works with high reproducibility and precision. By in-depth analyzing the obtained single cell morphological parameters, we show that the limited vertical resolution of the optical setup results in underestimated single cell contact area and volume and overestimated single cell averaged thickness. We propose a simple model to correct the recorded data to obtain more precise single cell parameters. We compare the results with the kinetic data recorded by a surface sensitive optical biosensor, optical waveguide lightmode spectroscopy.

Loading Enviroinvest Corporation collaborators
Loading Enviroinvest Corporation collaborators