Billerica, MA, United States
Billerica, MA, United States

Entegris, Inc. NASDAQ: ENTG is a leading provider of yield-enhancing materials and solutions for the most advanced manufacturing environments. Entegris’ customers include the world’s manufacturers of semiconductors and other electronics, as well their materials and equipment suppliers. Entegris operates out of its headquarters in Billerica, Mass. The company has about 3,500 employees in manufacturing, service center and research facilities in the United States, Malaysia, Singapore, Taiwan, China, Korea, Japan, Israel, Ireland, Germany and France.The company seeks to help manufacturers increase their yields by improving contamination control in several key processes, including photolithography, wet etching & cleaning, chemical-mechanical planarization, thin-film deposition, bulk chemical processing, wafer and reticle handling and shipping, and testing, assembly and packaging. Approximately 80% of the Company's products are used in the semiconductor industry.Manufacturing semiconductors is incredibly complex and requires levels of purity that are more stringent than any other industry. Entegris’ solutions help achieve these purity levels by protecting critical manufacturing materials from contaminants that are so small they are measured in width of atoms. In recent years, contamination control has become increasingly more difficult as semiconductor manufacturers drive their sub-20nm technology applications. At the same time these manufacturers are experiencing incredible pressure to increase productivity in the fab and stay cost competitive. As a result, companies are making the move to invest in technology that increases yields by minimizing product defects caused by contamination. Wikipedia.


Time filter

Source Type

Vaporizable material is supported within a vessel to promote contact of an introduced gas with the vaporizable material, and produce a product gas including vaporized material. A heating element supplies heat to a wall of the vessel to heat vaporizable material disposed therein. The vessel may comprise an ampoule having a removable top. Multiple containers defining multiple material support surfaces may be stacked disposed within a vessel in thermal communication with the vessel. A tube may be disposed within the vessel and coupled to a gas inlet. Filters, flow meters, and level sensors may be further provided. Product gas resulting from contact of introduced gas with vaporized material may be delivered to atomic layer deposition (ALD) or similar process equipment. At least a portion of source material including a solid may be dissolved in a solvent, followed by removal of solvent to yield source material (e.g., a metal complex) disposed within the vaporizer.


Apparatus and method for volatilizing a source reagent susceptible to particle generation or presence of particles in the corresponding source reagent vapor, in which such particle generation or presence is suppressed by structural or processing features of the vapor generation system. Such apparatus and method are applicable to liquid and solid source reagents, particularly solid source reagents such as metal halides, e.g., hafnium chloride. The source reagent in one specific implementation is constituted by a porous monolithic bulk form of the source reagent material. The apparatus and method of the invention are usefully employed to provide source reagent vapor for applications such as atomic layer deposition (ALD) and ion implantation.


Patent
Entegris | Date: 2016-11-17

A method of implanting carbon ions into a target substrate, including: ionizing a carbon containing dopant material to produce a plasma having ions; optionally co-flowing an additional gas or series of gases with the carbon-containing dopant material; and implanting the ions into the target substrate. The carbon-containing dopant material is of the formula C_(w)F_(x)O_(y)H_(z )wherein if w=1, then x>0 and y and z can take any value, and wherein if w>1 then x or y is >0, and z can take any value. Such method significantly improves the efficiency of an ion implanter tool, in relation to the use of carbon source gases such as carbon monoxide or carbon dioxide.


Patent
Entegris | Date: 2016-09-19

An improved wafer support mechanism in a wafer container useful for carrying a plurality of axially aligned thin mostly circular wafer substrates. The container includes a cassette that has a plurality of adjacently disposed teeth for receiving the substrates, wherein each rib member is continuous from the cassette open top to the cassette open bottom, a removable top cover portion, a removable bottom cover portion, a cushion assembly removably attached to the container top cover, and another cushion assembly removably located in the container bottom cover and held in place by the weight of the wafer cassette. The top cushions are formed of individual segments having an extended lead-in feature at the end of each segment, spring sections in each segment and each segment has a V-shaped cross section to receive the wafer edge. The top and bottom cushions are installed in the top and bottom container covers, respectively, and extend the wafer support to approximately the entire circumference of each wafer.


Patent
Entegris | Date: 2017-02-22

Systems and methods for delivering fluid-containing feed materials to process equipment are disclosed. A liner-based pressure dispensing vessel (220, 230) is subjected to filling by application of vacuum between the liner (224, 234) and overpack (222, 230). Multiple feed material flow controllers (321A-324A) of different calibrated flow ranges may be selectively operated in parallel for a single feed material. Feed material blending and testing for scale-up may be performed with feed materaisl supplied by multiple liner-based pressure dispensing containers. A gravimetric system may be used to determine concentration of at least one component of a multi-component solution or mixture.


Patent
Entegris | Date: 2017-01-25

Embodiments as disclosed herein may provide a sensor system including a container, such as a bag, having a port assembly integrated therewith. The port assembly includes an optically transparent window and be configured such that a sensor may be mechanically attached to the port assembly to interface with the optical window. The sensor may include an index of refraction (IoR) sensor that measures the chemical concentration of a liquid inside the container based on a refractive index.


Grant
Agency: European Commission | Branch: H2020 | Program: ECSEL-IA | Phase: ECSEL-02-2014 | Award Amount: 181.08M | Year: 2015

The SeNaTe project is the next in a chain of thematically connected ENIAC JU KET pilot line projects which are associated with 450mm/300mm development for the 12nm and 10nm technology nodes. The main objective is the demonstration of the 7nm IC technology integration in line with the industry needs and the ITRS roadmap on real devices in the Advanced Patterning Center at imec using innovative device architecture and comprising demonstration of a lithographic platform for EUV and immersion technology, advanced process and holistic metrology platforms, new materials and mask infrastructure. A lithography scanner will be developed based on EUV technology to achieve the 7nm module patterning specification. Metrology platforms need to be qualified for N7s 1D, 2D and 3D geometries with the appropriate precision and accuracy. For the 7nm technology modules a large number of new materials will need to be introduced. The introduction of these new materials brings challenges for all involved processes and the related equipment set. Next to new deposition processes also the interaction of the involved materials with subsequent etch, clean and planarization steps will be studied. Major European stakeholders in EUV mask development will collaboratively work together on a number of key remaining EUV mask issues. The first two years of the project will be dedicated to find the best options for patterning, device performance, and integration. In the last year a full N7 integration with electrical measurements will be performed to enable the validation of the 7nm process options for a High Volume Manufacturing. The SeNaTe project relates to the ECSEL work program topic Process technologies More Moore. It addresses and targets as set out in the MASP at the discovery of new Semiconductor Process, Equipment and Materials solutions for advanced CMOS processes that enable the nano-structuring of electronic devices with 7nm resolution in high-volume manufacturing and fast prototyping.


Patent
Entegris and Solvay Group | Date: 2016-01-29

Microporous membrane composites that are non-dewetting are disclosed. These microporous membrane composites are wet with solutions of methanol and water and are non-dewetting following autoclave treatment in water. The microporous membrane composites comprise a microporous membrane support that is coated with a crosslinked ionomer comprising hydrophilic groups. Compared to the microporous membrane support, the microporous membrane composite has a flow loss on average in isopropyl alcohol of less than 82%.


Patent
Entegris | Date: 2016-05-03

A front opening wafer container suitable, for large diameter wafers, 300 mm and above, utilizes a removable robotic flange that attaches vertically, without separate fasteners, using detents having resilient bending members that extend vertically to attach to an upwardly extending flange on the top wall of the container portion. A multiplicity of upwardly and outwardly extending strengthening ribs extend upwardly from the top wall of the container portion and extend along the top wall toward the left and right sides and the back side of the container portion, ad each of all four sides of the attachment flange. A further locking piece or core may be inserted and retained at the neck of the robotic flange to lock the resilient deflectable portions in their retention position. The locking piece further may be secured in place with a detent mechanism formed by part of the core and flanges.


Apparatus and method for monitoring a vapor deposition installation in which a gas mixture can undergo gas phase nucleation (GPN) and/or chemically attack the product device, under process conditions supportive of such behavior. The apparatus includes a radiation source arranged to transmit source radiation through a sample of the gas mixture, and a thermopile detector assembly arranged to receive output radiation resulting from interaction of the source radiation with the gas mixture sample, and to responsively generate an output indicative of onset of the gas phase nucleation and/or chemical attack when such onset occurs. Such monitoring apparatus and methodology is useful in tungsten CVD processing to achieve high rate tungsten film growth without GPN or chemical attack.

Loading Entegris collaborators
Loading Entegris collaborators