Entity

Time filter

Source Type

PITTSBURGH, PA, United States

Grant
Agency: Department of Health and Human Services | Branch: | Program: SBIR | Phase: Phase II | Award Amount: 880.73K | Year: 2014

DESCRIPTION (provided by applicant): Infection is a common and frequently very serious complication associated with medical implants. Man-made materials, including those used to fabricate ventricular assist devices (VADs), compromise the body's ability tofight infection in tw ways. First, by breaching skin with transcutaneous cannulae and drivelines, and second, by eliciting a foreign body reaction which results in scarring near the implant surface that creates an environment where bacteria can thrive outside the reach of the body's immune system. Currently available infection resistant materials typically rely on the release of antimicrobial substances. Though effective over the short-term, the released drugs can compromise normal healing and exacerbate the problem of isolating the implant surface from the body's immune defenses. Ension proposes development of an infection resistant surface designed to promote normal healing for application to the transcutaneous drivelines of ventricular assist devices. The


Grant
Agency: Department of Health and Human Services | Branch: National Institutes of Health | Program: SBIR | Phase: Phase I | Award Amount: 224.97K | Year: 2015

DESCRIPTION provided by applicant The objective of the proposed Phase I SBIR is to develop and evaluate the ability of a novel regenerative collagen matrix RCM to prevent scarring and contracture while promoting regeneration in burn wounds Scarring and contracture of burn wounds are very common and can lead to loss of tissue functionality and severely compromised tissue aesthetics Current dermal substitutes have not been significantly effective in minimizing scarring and contracture in burn wounds The standard of care includes massage pressure therapies steroids silicone dressings and additional surgeries to manage the scar and contracture burden All current therapies aim to manage scarring and contracture after healing The critical barrier to progress in the field is the lack of a wound dressing capable of intervening at the cellular level from the beginning of the healing process to prevent scarring and contracture To this end the proposed RCM incorporates enhanced architectural features and reinforced physical chemical and biological parameters to achieve a wound dressing suitable for application early in the treatment process and with the ability to prevent scarring an contracture while promoting regeneration in burn wounds Physical reinforcement will provide stress shielding to the cells that minimizes unchecked wound firboproliferation that leads to scarring and contracture This is achieved by combining two physical forms of collagens within the RCM Chemical reinforcement through crosslinking of the collagen will increase in vivo half life by making the collagen more resistant to enzymatic degradation in the wound milieu Biological reinforcement through heparin immobilization will induce regeneration because of heparinandapos s ability to sequester growth factors within the RCM and optimally present them to the cells that potentiates their effects The proposed RCMandapos s novel bi modal architecture will exhibit a random open pore scaffold to facilitate cellular migration and intercellular interaction withn the matrix and oriented micro channels to provide a micro niche topography for keratinocytes to enhance their proliferative phenotype and synthesis of the basement membrane proteins This bi modal architecture of the proposed RCM plays a vital role in providing the necessary stimuli for the wound invading cells to promote regeneration rather than scarring RCM will undergo extensive in vitro characterization to ensure that all Phase I design specifications are satisfied after sterilization In vitro feasibility assessments will include colagen denaturation temperature degradation time heparin bioactivity and pore size distribution In vivo testing will be performed using a standard swine burn model to determine initial efficacy and preliminary biocompatibility of RCM over the course of one and three months with biopsies collected at specified time points for histological wound evaluations If the proposed Phase I is successful then a Phase II SBIR proposal will be submitted with the objective to realize a commercialization path by conducting pre clinical studies aimed to determine efficacy and safety as described in the FDAandapos s andquot Guidance for Industry Chronic Cutaneous Ulcer and Burn Wounds Developing Products for Treatmentandquot PUBLIC HEALTH RELEVANCE The objective of the proposed Phase I SBIR is to develop and evaluate the ability of a novel regenerative collagen matrix RCM to prevent scarring and contracture while promoting regeneration in burn wounds Scars and contracture compromise the regeneration of the burn wound tissue to its original functionality and aesthetics The current standard of care is to largely manage scars and contractures only after healing has occurred In contrast the proposed RCM incorporates enhanced novel architectural features and reinforced physical chemical and biological parameters to prevent scarring and contracture before healing has occurred to enable optimal functional and aesthetic recovery of the wounded tissue


Grant
Agency: Department of Health and Human Services | Branch: | Program: SBIR | Phase: Phase I | Award Amount: 157.72K | Year: 2009

DESCRIPTION (provided by applicant): The high risk of infection posed by the use of paracorporeal and implanted mechanical circulatory support systems (MCSS) continues to create significant clinical complications. In this Phase I proposal, Ension will develop and assess the feasibility of a biointegrative surface coating that can be applied to implantable devices, cannulae, and drivelines. The proposed surface modification will consist of a surface layer formulated to prevent bacterial adhesion and a grafted near natural layer of collagen that will favor a normal healing response over the formation of a thick, fibrous capsule that can compromise immune function. In addition, the proposed engineered surface will be amenable to incorporating an antimicrobial that will release in a controlled manner over time. The goal of the proposed Phase I SBIR is to develop and demonstrate the feasibility of an infection resistant surface with the aim of reducing infection related complications of mechanical circulatory support. PUBLIC HEALTH RELEVANCE: The product of this research, an infection resistant surface coating, has application to any medical apparatus that passes through human skin at risk for infection. This includes the surfaces and transcutaneous component of artificial organs, cannula, fistula, and catheters.


A variety of polymeric synthetic hernia mesh prosthesis with surface treatment on at least one tissue-facing surface to control tissue adhesion are disclosed including heparin surface treatment which provides heparin present in an amount to yield heparin bioactivity of at least one of i) an ATIII binding of at least 2 pmol/cm


A method of treating the surface of a medical device with a biomolecule comprising the steps of: providing a polyolefin substrate forming a medical device; cleaning the polyolefin substrate; exposing the polyolefin substrate to a reactive gas containing acrylic acid and to plasma energy to yield a plasma-deposited polyacrylic acid coating on the polyolefin substrate; and attaching a biomolecule, such as heparin, to the polyolefin substrate following formation of the plasma-deposited polyacrylic acid coating on the polyolefin substrate.

Discover hidden collaborations