Glen Ellyn, IL, United States
Glen Ellyn, IL, United States

Time filter

Source Type

Futter M.N.,Swedish University of Agricultural Sciences | Poste A.E.,Trent University | Butterfield D.,EnMoSys | Dillon P.J.,Trent University | And 3 more authors.
Science of the Total Environment | Year: 2012

We present a new, catchment-scale, process-based dynamic model for simulating mercury (Hg) in soils and surface waters. The Integrated Catchments Model for Mercury (INCA-Hg) simulates transport of gaseous, dissolved and solid Hg and transformations between elemental (Hg 0), ionic (Hg(II)) and methyl (MeHg) Hg in natural and semi-natural landscapes. The mathematical description represents the model as a series of linked, first-order differential equations describing chemical and hydrological processes in catchment soils and waters which we believe control surface water Hg dynamics. The model simulates daily time series between one and 100years long and can be applied to catchments ranging in size from <1 to ~10,000km 2. Here we present applications of the model to two boreal forest headwater catchments in central Canada where we were able to reproduce observed patterns of stream water total mercury (THg) and MeHg fluxes and concentrations. Model performance was assessed using Monte Carlo techniques. Simulated in-stream THg and MeHg concentrations were sensitive to hydrologic controls and terrestrial and aquatic process rates. © 2012 Elsevier B.V.


Jin L.,New York University | Whitehead P.G.,University of Oxford | Baulch H.M.,University of Saskatchewan | Dillon P.J.,Trent University | And 7 more authors.
Inland Waters | Year: 2013

In Lake Simcoe (Ontario, Canada), anthropogenic phosphorus (P) loads have contributed to increased algal growth, low hypolimnetic dissolved oxygen concentrations, and impaired fish reproduction. Management targets to control eutrophication require an ambitious programme to reduce P loads to the lake. Remediation strategies rely upon an improved understanding of P sources and assessment of the effectiveness of different control options. Here we present an application of the integrated catchment model for phosphorus (INCA-P) to examine P sources across the Lake Simcoe watershed and simulate in-lake P concentrations. This is the first application of INCA-P to a complex watershed of this nature and the first to include a lake component. We evaluated a set of management actions to simulate anticipated effects of P reduction strategies on in-lake total phosphorus (TP) concentrations. The INCA-P scenarios show the difficulty of achieving large-scale reductions from the watershed, given the low rates of P export; however, the study shows that a multifaceted strategy, including fertilizer reduction, addition of buffer strips, more stringent controls on sewage treatment plant effluent, and reduced deposition of P to the lake surface, could achieve a 25% reduction in lake-water TP concentrations and produce TP close to the target of 0.01 mg L-1.


Sharma B.M.,TERI University | Bharat G.K.,TERI University | Tayal S.,TERI University | Larssen T.,Norwegian Institute for Water Research | And 7 more authors.
Environmental Pollution | Year: 2015

Many perfluoroalkyl substances (PFAS) are ubiquitous environmental contaminants. They have been widely used in production processes and daily-use products or may result from degradation of precursor compounds in products or the environment. India, with its developing industrialization and population moving from traditional to contemporary lifestyles, represents an interesting case study to investigate PFAS emission and exposure along steep environmental and socioeconomic gradients. This study assesses PFAS concentrations in river and groundwater (used in this region as drinking water) from several locations along the Ganges River and estimates direct emissions, specifically for PFOS and PFOA. 15 PFAS were frequently detected in the river with the highest concentrations observed for PFHxA (0.4-4.7 ng L-1) and PFBS (


Sharma B.M.,TERI University | Bharat G.K.,TERI University | Tayal S.,TERI University | Larssen T.,Norwegian Institute for Water Research | And 6 more authors.
Environmental pollution (Barking, Essex : 1987) | Year: 2016

Many perfluoroalkyl substances (PFAS) are ubiquitous environmental contaminants. They have been widely used in production processes and daily-use products or may result from degradation of precursor compounds in products or the environment. India, with its developing industrialization and population moving from traditional to contemporary lifestyles, represents an interesting case study to investigate PFAS emission and exposure along steep environmental and socioeconomic gradients. This study assesses PFAS concentrations in river and groundwater (used in this region as drinking water) from several locations along the Ganges River and estimates direct emissions, specifically for PFOS and PFOA. 15 PFAS were frequently detected in the river with the highest concentrations observed for PFHxA (0.4-4.7 ng L(-1)) and PFBS (


PubMed | Masaryk University, Swedish University of Agricultural Sciences, TERI University, Enmosys and 2 more.
Type: Journal Article | Journal: Environmental pollution (Barking, Essex : 1987) | Year: 2015

Many perfluoroalkyl substances (PFAS) are ubiquitous environmental contaminants. They have been widely used in production processes and daily-use products or may result from degradation of precursor compounds in products or the environment. India, with its developing industrialization and population moving from traditional to contemporary lifestyles, represents an interesting case study to investigate PFAS emission and exposure along steep environmental and socioeconomic gradients. This study assesses PFAS concentrations in river and groundwater (used in this region as drinking water) from several locations along the Ganges River and estimates direct emissions, specifically for PFOS and PFOA. 15 PFAS were frequently detected in the river with the highest concentrations observed for PFHxA (0.4-4.7 ng L(-1)) and PFBS (


Baulch H.M.,University of Saskatchewan | Futter M.N.,Swedish University of Agricultural Sciences | Futter M.N.,Trent University | Jin L.,New York University | And 10 more authors.
Inland Waters | Year: 2013

We report results from a spatially intensive monitoring and modelling study to assess phosphorus (P) dynamics in the Beaver River, a tributary of Lake Simcoe, Ontario. We established multiple monitoring stations (9 flow and 24 water quality stations) from headwaters to near the outflow that were operated for 2 field seasons, complementing longer term data from a flow monitoring site and water chemistry monitoring site. We applied the Branched-INCA-P model, which allows fully distributed simulations supported by highly distributed monitoring data. Using spatially distributed data helped better understand variable P and sediment dynamics across the catchment and identify key model uncertainties and uncertainties related to catchment P management. Measured and modelled total P concentrations often exceeded provisional water quality thresholds in many areas of the catchment and highlight the value of studying water quality across multiple subcatchments rather than at a single site. Total P export coefficients differed widely among subcatchments, ranging from 2.1-21.4 kg km-2 y-1 over a single year. Export coefficients were most strongly (negatively) related to the proportion of wetland cover in subcatchments. The INCA-P model captured spatial variation in P concentrations relatively well, but short-term temporal variability in the observed data was not well simulated across sites, in part due to unmodelled hydrological phenomena including beaver activity and unknown drivers of P peaks that were not associated with hydrological events.


Jin L.,New York University | Whitehead P.G.,University of Oxford | Sarkar S.,Indian Institute of Technology Kanpur | Sinha R.,Indian Institute of Technology Kanpur | And 5 more authors.
Environmental Sciences: Processes and Impacts | Year: 2015

Anthropogenic climate change has impacted and will continue to impact the natural environment and people around the world. Increasing temperatures and altered rainfall patterns combined with socio-economic factors such as population changes, land use changes and water transfers will affect flows and nutrient fluxes in river systems. The Ganga river, one of the largest river systems in the world, supports approximately 10% global population and more than 700 cities. Changes in the Ganga river system are likely to have a significant impact on water availability, water quality, aquatic habitats and people. In order to investigate these potential changes on the flow and water quality of the Ganga river, a multi-branch version of INCA Phosphorus (INCA-P) model has been applied to the entire river system. The model is used to quantify the impacts from a changing climate, population growth, additional agricultural land, pollution control and water transfers for 2041-2060 and 2080-2099. The results provide valuable information about potential effects of different management strategies on catchment water quality. This journal is © The Royal Society of Chemistry.


Jackson-Blake L.A.,James Hutton Institute | Jackson-Blake L.A.,Norwegian Institute for Water Research | Wade A.J.,University of Reading | Futter M.N.,Swedish University of Agricultural Sciences | And 13 more authors.
Environmental Modelling and Software | Year: 2016

INCA-P is a dynamic, catchment-scale phosphorus model which has been widely applied during the last decade. Since its original release in 2002, the model structure and equations have been significantly altered during several development phases. Here, we provide the first full model description since 2002 and then test the latest version of the model (v1.4.4) in a small rural catchment in northeast Scotland. The particulate phosphorus simulation was much improved compared to previous model versions, whilst the latest sorption equations allowed us to explore the potential time lags between reductions in terrestrial inputs and improvements in surface water quality, an issue of key policy relevance. The model is particularly suitable for use as a research tool, but should only be used to inform policy and land management in data-rich areas, where parameters and processes can be well-constrained. More long-term data is needed to parameterise dynamic models and test their predictions. © 2016 Elsevier Ltd


Futter M.N.,Swedish University of Agricultural Sciences | Erlandsson M.A.,University of Reading | Butterfield D.,ENMOSYS | Whitehead P.G.,University of Oxford | And 2 more authors.
Hydrology and Earth System Sciences | Year: 2014

Runoff generation processes and pathways vary widely between catchments. Credible simulations of solute and pollutant transport in surface waters are dependent on models which facilitate appropriate, catchment-specific representations of perceptual models of the runoff generation process. Here, we present a flexible, semi-distributed landscape-scale rainfall-runoff modelling toolkit suitable for simulating a broad range of user-specified perceptual models of runoff generation and stream flow occurring in different climatic regions and landscape types. PERSiST (the Precipitation, Evapotranspiration and Runoff Simulator for Solute Transport) is designed for simulating present-day hydrology; projecting possible future effects of climate or land use change on runoff and catchment water storage; and generating hydrologic inputs for the Integrated Catchments (INCA) family of models. PERSiST has limited data requirements and is calibrated using observed time series of precipitation, air temperature and runoff at one or more points in a river network. Here, we apply PERSiST to the river Thames in the UK and describe a Monte Carlo tool for model calibration, sensitivity and uncertainty analysis.© Author(s) 2014. CC Attribution 3.0 License.


Crossman J.,University of Oxford | Crossman J.,Trent University | Futter M.N.,Swedish University of Agricultural Sciences | Futter M.N.,Trent University | And 6 more authors.
Journal of Great Lakes Research | Year: 2013

The impacts of climate change on hydrology and water quality of the Black River, a tributary of Lake Simcoe, Canada, were assessed for the period 2001-2100, by integrating two models, HBV and INCA-P, and using statistically downscaled data from the Global Circulation Model CGCM3 for two IPCC scenarios (A1b and A2). The effectiveness of catchment management strategies was assessed across the 21st century by simulating controls on sewage treatment works and fertiliser applications, and implementing buffer strips and bank erosion controls.Both IPCC scenarios projected greatest precipitation increases during winter (highest in A2), and greatest rises in temperature during summer (highest in A1b) throughout the 21st century. Under both IPCC scenarios, the greater winter precipitation and warmer temperatures resulted both in higher winter flows and in an earlier spring snowmelt event. Under scenario A2, the flow regime ceased to represent a river with a significant snowmelt influence by the 2090s. Increasing summer temperatures reduced summer flows (greater under A1b).Despite variability between IPCC scenarios, both projected increases in annual TP loadings into Lake Simcoe throughout the 21st century (greatest during winter). Management scenarios reduced, but did not fully compensate for, the impact of climate change upon Black River TP loads throughout the 21st century. Winter increases were still observed, due to high rainfall and flow. This climatic impact has significant implications for the current management plans which aim to reduce TP loads to the Lake by 30. tonnes. Mitigation strategies should therefore focus on methods for reducing TP loadings during wetter conditions. © 2012 International Association for Great Lakes Research.

Loading Enmosys collaborators
Loading Enmosys collaborators