Time filter

Source Type

Organization, Taiwan

Lin C.-F.,National Taiwan Ocean University | Hong Z.-C.,Tamkang University | Chern J.-S.,China Institute of Technology | Lin C.-M.,Tamkang University | And 3 more authors.
WSEAS Transactions on Applied and Theoretical Mechanics | Year: 2010

One of the main advantage of microsatellites is their small size. The reliability, safety, and effectiveness of the satellite structure play an important role in the normal operation of the satellite. The satellite structure should be designed that it supports all subsystems, and payloads. The satellite structure should be stable against vibration and environmental factors during the rocket launch, in order to ensure normal operation of the other subsystems and payload. When designing a satellite, we take into account the features of the attitude control subsystem, thermal control subsystem, and solar energy subsystem, which are essential for stable operation, as well as the reliability of the structure. In this article, we discuss a structure design for the Taiwan Universities United Satellite NO.1A (TUUSAT-1A) microsatellite. The satellite is a cube with an edge of 28 cm. The surface of the satellite is covered by six aluminum plates, each of which has a solar chip attached to it. The satellite mainly comprises four layers-each layer is an aluminum plates that form a single aluminum alloy block.

Weng S.-L.,Systems Engineering Division | Lian Y.-Y.,Systems Engineering Division
Proceedings of SPIE - The International Society for Optical Engineering | Year: 2011

Instead of outsourcing the whole FORMOSAT-2 satellite to a foreign prime contractor, the National Space Organization in Taiwan is stepping ahead to take the full responsibility of consolidating self-reliant space technology capabilities. A newly initiated program FORMOSAT-5 satellite, not only to build a heritage design of a spacecraft bus but also, selfreliantly, to leap a big step toward Remote Sensing Instrument payload development, is sailing on its voyage. Among the payload development effort, an integrated circuit of the kind Complementary Metal Oxide Semiconductor instead of Charge-coupled Device is chosen as the image sensor playing the lead role for the instrument. Despite the foreseen technical concerns, management issues over scheduling and documentation are constantly emerging owing to the payload development underwent is collaborated by several domestic industries and research centers. Regardless of challenges we may confront with, a carefully planned strategy especially emphasizing on the product realization processes is considered, discussed, and implemented. © 2011 SPIE.

Discover hidden collaborations