Time filter

Source Type

Islamabad, Pakistan

Guo C.,Engineering Laboratory
Proceedings - 2nd International Conference on Networking and Distributed Computing, ICNDC 2011

This paper presents a Service-Oriented Collaborative Working Environment(CWE), it is based on Service-Oriented Architecture(SOA), and makes collaborative working's business model divide into basic cooperating functions, which is encapsulated and integrated using Web Service. It supports distributing, multi-platform, extensibility, high responsibility and fast deployment. The solution is suitable for high-end co-operation system. © 2011 IEEE. Source

News Article | December 3, 2015
Site: http://motherboard.vice.com/

The weapons that will be used to fight tomorrow’s wars will need to address a very old problem: friendly fire. Researchers think complex algorithms can help by telling soldiers where to shoot, and where not to. But how much trust should soldiers place in a machine that helps them to decide who to kill? “The reality is that soldiers are doing a very difficult task under very difficult circumstances,” Greg Jamieson, a researcher at the University of Toronto’s Cognitive Engineering Laboratory (CEL), told me over the phone. “So, if you can provide some kind of tool to help people make better decisions about where there’s a target or who this target is or the identity of that target, that’s in the interest of the civilian or non-aligned people in the environment.” The problem is that the tool Jamieson is referring to, called automated target detection (ATD), doesn’t really exist in any sort of ready-to-deploy form for individual soldiers. So, in partnership with Defence Research and Development Canada (DRDC), Jamieson and the other researchers at CEL are tackling the research backwards: instead of testing new tech to see how soldiers respond, they’re testing soldiers to understand what they need out of new tech. Photo: Her Majesty the Queen in Right of Canada, as represented by the Minister of National Defence, 2014 Essentially, the CEL researchers are studying the trust soldiers place in ATD, and if soldiers benefit from imperfect automation when they understand its limitations. “People don’t want to tell us how well things work, and they don’t want to tell us how reliable they are because that’s sensitive information,” Jamieson said. “So, instead we take the opposite direction and say, OK, how about we provide the designers of this technology with some information about how effective it needs to be in order for it to be an aid to soldiers?” Studying ATD is a current focus for the Canadian military’s Future of Small Arms Research project, which is investigating and developing the killing machines for tomorrow’s wars. Basically, ATD relies on computer vision to process information about the scene surrounding a soldier and provide live feedback about targets in the area. But while many approaches to this task have been proposed over the years including laser radar, deep learning, and infrared imaging, the work has been met with limited success. Getting a computer to parse a busy scene with noisy data is hard, especially when you need enough accuracy to justify pulling the trigger, and in the blink of an eye. In these studies, a soldier is put in a room and surrounded by screens, meant to create the illusion of a virtual battle field. The DRDC calls this the virtual immersive soldier simulator, or VISS. Difficult-to-identify targets fly across the screen as the soldier looks down a modified rifle, with a heads-up-display projected inside the sight. The soldier sees yellow boxes around some of the objects in the scene—but not all—to indicate that the hypothetical ATD system has identified a target. The researchers "bias" the system to detect friendlies more readily than enemies, thus helping the soldier make a decision about whether a friend or foe has been targeted. Before the study, the soldier is told how reliable the system is, usually anywhere from 50 to 100 percent, and how likely it is to detect a soldier versus a civilian. The soldier must then decide when to shoot. Photo: Her Majesty the Queen in Right of Canada, as represented by the Minister of National Defence, 2014 “We found that if we informed our participants of the ATD bias, they were more likely to identify targets in accordance with the ATD bias,” Justin Hollands, a DRDC researcher working on the project at CEL, wrote me in an email. “Importantly, we also found that detection of targets was much better with the ATD than without, regardless of its bias.” In other words, the automated targeting helped soldiers shoot better, especially when they were informed about how much trust they should place in its performance. Some past approaches for target identification include the combat identification (CID) systems currently used by many NATO countries. This kind of CID relies on a two-part “call and response” handshake between two sensors, one worn by the soldier or vehicle trying to identify a target, and the other by the friendly. The problem with this approach is that enemies and neutrals obviously don’t wear army-issue CID transponders, and so these systems often leave soldiers in a world of unknowns. According to Jamieson, these technologies sorely need an update, and ATD could be the answer. The message Jamieson wants to get across based on the work that he’s done at CEL, he tells me, is that automation doesn’t need to be better, or even as effective, as a human soldier. Of course, the idea of a computer telling a human to shoot to kill at an innocent bystander is no doubt unsettling—terrifying, even. The fact that it only happens sometimes doesn’t really help to allay such fears. But, Jamieson says, as long as a human still has to pull the trigger and understands the technology’s pitfalls, then it’s a net positive. “What that suggests to the people who are designing these technologies is that it doesn’t have to be perfect,” Jamieson said. “Instead of trying to make it perfect, we could invest energy in communicating what that reliability information means. That’s kind of where we want to go with the research in the future. We want to figure out how to tell a soldier most effectively how reliable the automation is.” The next step will be to take what the team at CEL has learned about automated targeting and put it into practice with some of the experimental tech that currently exists.“Within the FSAR project we will also conduct field trials where weapons have actual ATD and soldiers will use those,” Hollands wrote me, “so we will look at real weapons with real algorithms in those studies.” Eventually, automatic targeting tech will make it out of tests and onto the battlefield. But in between, thorny design questions will need to be answered: what imaging technique and algorithm will be used to identify targets? Will the device be mounted on the soldier or their weapon? How large will it be? How heavy? Machines that tell humans on the ground who to shoot at are still years away from being deployed, but Jamieson and Hollands’ work makes one thing clear: technical advances aside, tomorrow’s computer-aided warfare will be about trust.

News Article
Site: http://www.greencarcongress.com/

« Navigant: sales of light duty vehicles to total more than 2.1 billion from 2015 to 2035 | Main | 2016 Hyundai Sonata Plug-In Hybrid powertrain named to Ward’s 10 Best Engines List » Ford is expanding its electrified vehicles research and development program in Europe and Asia this year, creating a “hub-and-spoke” system that allows the global team to further accelerate battery technology and take advantage of market-specific opportunities. The global expansion also allows Ford’s Electrified Powertrain Engineering teams to share common technologies and test batteries virtually, in real time, to develop new technology faster while reducing the need for costly prototypes. Ford—the top seller of plug-in hybrid vehicles and second largest electrified vehicle (i.e., including conventional hybrids) seller in the US—continues investing in electrified vehicle technology, research and development teams. This year, Ford expanded its Electrified Powertrain Engineering (EPE) program in Dearborn to focus on developing new technologies for electrified vehicles by hiring more than 120 additional electrified vehicle engineers and moving the EPE team into its own dedicated facility, Ford Engineering Laboratory. The expanded engineering capabilities enabled by the Ford Engineering Laboratory allow the team to control a network of facilities in China, England, Germany, and the US. Through this network, the EPE team will take advantage of globally connected technologies to develop lighter and more durable EV batteries. Ford also is expanding in China and Europe to accelerate battery technology research and development for new markets. By using hardware-in-the-loop, the global team can test battery technology and control system hardware in a virtual environment to simulate how batteries and control modules would behave in different environments in any part of the world. Testing of batteries across a range of temperatures and charge/discharge cycling conditions is important for determining how quickly a battery could degrade in different parts of the world. The global Ford team has used temperature testing extensively for more than a decade as part of its production battery design and validation process. Through testing, Ford has been able to develop more durable batteries that can survive extreme cold and hot temperatures. The company recently expanded its offerings in growing markets, including Taiwan and Korea, where the company offers the Mondeo Hybrid. Ford also announced it is bringing the C-MAX Energi Plug-In Hybrid and the Mondeo Hybrid to China. In October, Ford, the University of Michigan and the Michigan Economic Development Corporation announced a new $9-million battery lab at the University of Michigan that is helping the company develop batteries that are smaller, lighter and less expensive to produce. The small-scale manufacturing facility uses the latest battery development and research technologies to replicate the performance of full-scale production batteries, allowing for faster implementation in future production vehicles.

News Article
Site: http://www.labdesignnews.com/rss-feeds/all/rss.xml/all

The building industry relies heavily on sophisticated modeling, typically deploying energy models with accuracies ranging from 5 to 50%, and computational fluid dynamics (CFD) models that deliver accuracy in the 5 to 20% range. Purdue Univ.’s Center for High-Performance Buildings at the Ray W. Herrick Labs (Herrick) is a breakthrough research facility defined by the precision of its empirical measurement. The ability to re-configure space to integrate measurement at all levels is inherent in the building. Herrick’s design manifests the primacy of measurement in a space programming topology that accommodates dexterity and specific instruments’ requirements for access and control. A living lab capable of complete change-out of entire building systems, Herrick is far more accurate than any model. Yet, it respects the model, seeks to inform it, calibrate it and make it robust. Herrick enables researchers—both staff and industry partners—to incubate and validate new building systems and products, empirically measuring their impact on energy and the indoor environment. Herrick’s thermodynamics labs provide validation through the Thermal Systems Lab, Psychrometric Chambers Lab and Living Labs. Each lab is equipped with a graduating set of instrumentation to match the evolution of an idea from prototype to commercial product. Consistent with Herrick’s “measure not model” mantra, the results measured in two experimental Living Labs are compared against two baseline Living Labs. Meticulous care was taken to insure both internal and envelope loads—prior to experimental changes—were uniform across all four labs, thus creating near-zero error in terms of measured improvements vis-à-vis the baseline standards. The “unit under test” in the Perception Based Engineering Laboratory (PBE) is the human being. What constitutes ergonomic design is proven here, through precise manipulation of temperature, velocity, humidity, vibration, light and sound. Similarly, the unit under test in the Air Quality Chamber is the ambient environment. The end result is highly dependable characterization of spaces ranging from infectious disease patient rooms and intensive care units to cleanrooms, airplane cabins and nanofabrication labs. This facility expresses a world-class research environment with flexible space, infrastructure accuracy and the ability to inspire and showcase science. Since the lab itself is such an integral component of the research, engaging users is a critical design dynamic with the end goal of delivering a facility that is nimble and clearly understood by users. Ultimately, this is a facility where users gain a sense of ownership and participate in the configuration of its spaces. The facility’s instrumented geo-exchange borehole is the first of its kind, providing critical real-world data to minimize error and improve typical rule-of-thumb “tons, (of cooling), per borehole” assumptions—a researcher’s tool to study real-world, Earth-derived delta Ts. Researchers use the data taken from the operation to develop the next algorithm to model, and optimize design for future geo-exchange fields worldwide. Herrick Laboratory received a LEED Gold rating. The collection of labs is itself engineered so individual labs can borrow capacity from other labs that are idle, and the building itself can borrow operational capacity from corresponding lab systems. Combined with conventional passive and active sustainability measures, the building is realizing a 44% reduction in energy use and a 39% reduction in water use. Researchers can control and monitor set points (temperature and humidity) throughout the building, examining optimal solutions for whole-building energy management as a function of research and occupant demands. Closed thermal loops within the building interact with campus steam and chilled water, and with each other, so heat rejection and heat injection in experiments can be managed in an environmentally friendly manner. When the geothermal loop isn’t used for research, it supplements the heating and cooling in the building. For more information on the project, please click here. AEI Principal Dave Sereno leads the firm’s Industrial Practice, working with automotive, engine and aerospace manufacturers, national labs, fuel and oil companies and major research universities. With a career focused on research, mission-critical and test facilities, AEI Project Manager Jeff Cappelle has developed a valuable blend of technical expertise and a collaborative style of project leadership.

News Article
Site: http://news.yahoo.com/science/

Constance Walter is the communications director for the Sanford Underground Research Facility. She explores the stars vicariously through the physics experiments running nearly a mile underground in the former Homestake Gold Mine. She contributed this article to Space.com's Expert Voices: Op-Ed & Insights. In 1969, Neil Armstrong fired my imagination when he took "a giant leap" onto the moon. I was 11 years old as I watched him take that first step, and like millions around the world, I was riveted to the screen. Today I wonder how I would have reacted if the news anchor had simply described this incredible moment. Would I have been so excited? So inspired? So eager to learn more? I don't think so. It was seeing the story unfold that made it magical, that pulled me into the story. How we see the world impacts how we view it: That first glimpse of outer space sparked an interest in science. And although I didn't become a scientist, I found a career in science, working with researchers at Sanford Underground Research Facility in Lead, South Dakota, explaining the abstract and highly complex physics experiments in ways the rest of us can appreciate. It isn't always easy. Ever heard of neutrinoless double-beta decay? Probably not. If I told you this rare form of nuclear decay could go a long way in helping us understand some of the mysteries of the universe, would you get the picture? Maybe. The words are important, but an illustration or animation might give you a better idea. Kathryn Jepsen, editor-in-chief of the physics magazine Symmetry, captured this need for the visual in this way: In trying to create images for her readers, she is never sure if her intent is what readers "see" in their mind's eye — so she works with illustrators, videographers and photographers to create the images she wants them to see. "Videos and animations show them exactly what we want to get across," Jepsen said. And such visualizations can be profound. Take a look at this operatic animation from Oak Ridge National Laboratory. Created using simulations run on the supercomputers at the National Center of Computational Sciences, it shows the expected operation of the ITER fusion reactor. The video clearly outlines the objectives of the experiment, but the animation allows greater understanding as to how the fusion reactor could be used to create energy. The Sanford Lab has many stories to tell: complex research experiments, a Nobel Prize, and a 126-year history as a mine, to name a few. We write stories for a newsletter called Deep Thoughts, the Sanford Lab website and other publications. But we don't rely solely on words. Photographs and video play a big role in how we present the lab to the world. Researchers at Sanford Lab go deep underground to try to answer some of the most challenging physics questions about the universe. What is the origin of matter? What is dark matter and how do we know it exists? What are the properties of neutrinos? Going deep underground may help them answer these fundamental questions about the universe. [Where Is All the Dark Energy and Dark Matter?] Here's how: Hold out your hand. On the Earth's surface, thousands of cosmic rays pass through it every day. But nearly a mile underground, where these big physics experiments operate, it's more than a million times quieter. The rock acts as a natural shield, blocking most of the radiation that can interfere with sensitive physics experiments. It turns out Sanford Lab is particularly suited to large physics experiments for another reason — the hard rock of the former Homestake Gold Mine is perfect for excavating the large caverns needed for big experiments. From 1876 to 2001, miners pulled more than 40 million ounces of gold and 9 million ounces of silver from the mine. In the beginning they mined with pickaxes, hammers and shovels — often in the dark with only candles for light. As they dug deeper, they brought wagons and mules underground to haul ore. Some animals were born, raised and died without ever seeing the sunshine. By the early 1900s, Homestake was using locomotives, drills and lights. By the early 1980s, the mine reached 8,000 feet, becoming the deepest gold mine in North America, with tunnels and drifts pocketing 370 miles of underground. At its heyday, Homestake employed nearly 2,000 people, but as gold prices plummeted and operation costs soared, the company began decreasing operations and reducing staff. Finally, in 2001, the Barrick Gold Corp., which owned the mine, closed the facility. Five years later, the company donated the property to South Dakota for use as an underground laboratory. That same year, philanthropist T. Denny Sanford donated $70 million to the project. Since then, the state has committed more than $45 million in funds to the project. Early on, South Dakota received a $10 million Community Development Block Grant to help rehabilitate the aging facility. Part of the glamor of using Homestake to build a deep underground science laboratory was its history as a physics landmark. Starting in the mid-1960s, nuclear chemist Ray Davis operated his solar neutrino experiment 4,850 feet underground (designated the 4850 Level) of Homestake mine. Using a 100,000-gallon tank full of perchloroethylene (fluid used in dry cleaning), Davis looked for interactions between neutrinos and the chlorine atoms, believing they would change into argon atoms. Far from the mining activity, Davis worked for nearly three decades to prove the theory developed with his collaborator John Bahcall, professor of astrophysics in the School of Natural Sciences at the Institute for Advanced Study at Princeton. The two proposed that the mysteries of the sun could be examined by measuring the number of neutrinos arriving on Earth from the sun. By the 1970s, Davis proved the theory worked; however, there was a slight problem: Davis found only one-third of the neutrinos predicted based on the standard solar and particle physics model. This led to the solar neutrino problem. "The solar neutrino problem caused great consternation among physicists and astrophysicists," Davis said years later. "My opinion in the early years was that something was wrong with the standard solar model; many physicists thought there was something wrong with my experiment." Scientists at underground laboratories around the world wanted an answer to this riddle. Eventually, the mystery was solved by researchers in two separate experiments: one at SNOLab in Canada, the other at the Super-Kamiokande Collaboration in. As it turns out, neutrinos are pretty tricky characters, changing "flavors" as they travel through space, oscillating between electron, muon and tau neutrinos. Davis's detector was only able to see the electron neutrino. In 2002, Davis's groundbreaking research earned him the Nobel Prize in Physics — energizing physicists to lobby for a laboratory on the hallowed ground at the abandoned Homestake Mine. (This year, Takaaki Kajita of Super-Kamiokande and Arthur McDonald of SNOLab shared the Nobel Prize in Physics for their discoveries of neutrino oscillation.) Because of the site's rich physics history and unique structure, South Dakota and many scientists lobbied to have a billion-dollar deep underground laboratory at the mine, as deep as 7,400 feet — and in 2007 the U.S. National Science Foundation (NSF) selected it as the preferred site for a proposed Deep Underground Science and Engineering Laboratory (DUSEL). But in 2010, the National Science Board decided not to fund further design of DUSEL. Physicists, citizens and politicians immediately began seeking other funding sources, and in 2011, the U.S. Department of Energy (DOE), through the Lawrence Berkeley National Laboratory, agreed to support ongoing science operations at Sanford Lab, while investigating how to use the underground research facility for other longer-term experiments. Today, Sanford Lab hosts three large physics experiments nearly a mile underground on the 4850 Level. The Large Underground Xenon (LUX) experiment, is looking for dark matter, which makes up most of the matter in the universe, but has yet to be detected. We can't see or touch dark matter, but we know it exists because of its gravitational effects on galaxies and clusters of galaxies. Scientists with LUX use a vessel filled with one-third of a ton of liquid xenon, hoping that when a weekly interacting massive particle, or WIMP, strikes a xenon atom, detectors will recognize the signature. In October 2013, after an initial run of 80 days, LUX was named the most sensitive dark-matter detector in the world. [Dark Matter, Dark Energy, Mystery Explained: A Reader's Guide (Infographic)] The Majorana experiment brings us back to that obscure-sounding neutrinoless double-beta decay. Neutrinos, among the most abundant particles in the universe, are often called "ghost" particles because they pass through matter like it isn't there. Scientists with the Majorana experiment hope to spot the rare neutrinoless double-beta decay phenomenon, which could reveal if neutrinos are their own antiparticles. The answer to this question could help us understand why humans — and, indeed, the universe — exist. Majorana needs an environment so clean it was built almost entirely out of copper, electroformed deep underground, and it uses dozens of detectors made of enriched germanium crystals (76Ge) in its quest. The detectors are built in an ultraclean "glove box," which is purged periodically with nitrogen gas, to ensure not even a single speck of dust will touch the highly sensitive detectors. When completed, the strings of detectors are placed inside a copper vessel that goes into a layered shield for extra protection against the environment. CASPAR (Compact Accelerator System for Performing Astrophysical Research) researchers are studying the nuclear processes in stars. Essentially, the goal is to create the same reactions that happen in stars a bit "older" than our sun. If researchers can do that, it could help complete the picture of how the elements in our universe are built. The experiment is undergoing calibration tests and will go online in early 2016. Do you have a picture in your mind of each of these experiments? Is it the right picture? It's not easy. Writers want the public to clearly understand why the science is important. And so we look for images that will complement our stories. Matt Kapust is the creative services developer at Sanford Lab (the two of us make up the entire communications team). Since 2009, Kapust has been documenting the conversion of the mine into a world-leading research laboratory, using photography and video to record each stage of construction and outfitting. "Video is one of the most important tools we have in our tool belt," Kapust said. "As content developers, we need to find creative ways to explain esoteric science concepts to mainstream audiences in ways that get them excited about science." Film is important for other reasons, as well. "Massive science projects like the ones we have at Sanford Lab are not privately funded, they are not corporate run," Kapust said. "They are funded by the public and need public support. Film's mass appeal allows us to tell the stories in new ways and generate that widespread support." Sanford Lab receives $15 million year for operations each year from the DOE. In addition to the $40 million given to support the lab in 2007, South Dakota recently gave the lab nearly $4 million for upgrades to one of the shafts. The individual experiments receive millions of dollars in funding from NSF and DOE, and a proposed future experiment, the Long Baseline Neutrino Facility and associated Deep Underground Neutrino Experiment (LBNF/DUNE) is expected to cost $1 billion. All of this comes from taxpayers. And they want to know where their money is going — and why. Our stories, if we do them right, create excitement and spur the public's collective imagination — I mean, we're talking about possibly discovering the origins of the universe! When you think about it in those terms, a picture — or video — could be worth a million words, or a billion dollars. Kapust points to that billion-dollar experiment as an example. LBNF/DUNE, currently in the planning stages, will be an internationally designed, coordinated and funded collaboration that will attempt to unlock the mysteries of the neutrino. Billions of neutrinos pass through our bodies every second. Billions. They are formed in nuclear reactors, the sun (a huge nuclear reactor) and other stars, supernovae and cosmic rays as they strike the Earth's atmosphere. In particular, researchers with LBNF/DUNE want to more fully understand neutrino oscillations, determine the mass of these ghostly particles, and solve the mystery of the matter/antimatter imbalance in the universe. To do this, they will follow the world's highest-intensity neutrino beam as it travels 800 miles through the Earth, from Fermilab in Batavia, Illinois, to four massive detectors on the 4850 Level of Sanford Lab. And should a star go supernova while the experiment is running, the researchers could learn a lot more. LBNF/DUNE will be one of the largest international megascience experiments to ever occur on U.S. soil. The sheer scale of the experiment is mind-boggling. For example, the detectors are filled with 13 million gallons of liquid argon, an element used in the SNOLab experiment that discovered neutrino oscillation. And more than 800,000 tons of rock will be excavated to create three caverns — two for the detectors and one for utilities. Each cavern will be nearly the length of two football fields. That will require a lot of blasting, and engineers at Sanford Lab want to document the test blasts for a couple of reasons: They want a graphic representation of what the blast will look like and they hope to catch any visual appearance of dust going down the drift. The huge experiment is being built near existing experiments and dust could have a negative impact. Capturing the event on video could help them determine better ways to blast the rock to route the dust away from other sensitive physics experiments. As the experiment moves forward, our team will document each stage. We can't bring visitors underground, but we can show them our progress. Katie Yurkewicz, head of communications at Fermi National Accelerator Laboratory (Fermilab), said, "If words are our only tools, it can be extremely difficult (if not impossible) to get people to that 'Aha!' moment of understanding. Video and animations are invaluable in communicating those complex construction and physics topics." In our field, it's important to seek the expertise and interest of other communicators and the media. "We often rely on documentary filmmakers, news organizations and public broadcasting to help us tell our stories," Kapust said, citing RAW Science, the BBC and South Dakota Public Broadcasting among those entities. "It's important for us to be able to work with these groups because we have limited resources. We need the assistance and networking opportunities they offer." In May 2015, a team from PRI's Science Friday arrived at Sanford Lab to do a story about LUX and the search for dark matter. The team spent three days filming underground and on the surface. They interviewed scientists, students and administrators. The story was told on radio, of course, but the program also included a 17-minute video on Science Friday's website. The radio program used sound, tone and words to great effect. But the video takes viewers onto the cage and down the shaft, into a modern, well-lit laboratory, and on a locomotive ride through the dark caverns of the underground. (Science Friday submitted the video for competition in the RAW Science Film Festival, which takes place Dec. 4-5 in Los Angeles.) Producing film at Sanford Lab isn't easy. Trips underground require careful planning, and even a trip action plan, part of a log that keeps track of everyone working underground. Should an emergency arise, the underground will be evacuated; the log ensures everyone gets to the surface safely. Because we are required to spend a lot of time underground, we undergo regular safety training that adds up to several hours a year. For every trip, we don restrictive clothing — hardhats as a safety measure and coveralls to keep dust from our clothing — then take an 11-minute ride in a dark cage, or elevator, to laboratories nearly a mile down. We lug our heavy lighting, sound and camera equipment with us, and shoot video in tight spaces. If we forget something, we can't turn around and go back — the cage only runs at certain times of the day. Bringing our lunch is a definite must. Once underground, we enter the cart wash area, where we remove our coveralls, don clean hardhats, and clean all of the equipment with alcohol wipes — we don't want to bring any dirt into the lab. Finally, we put booties over our shoes, then enter the laboratory area. One big perk? There's an espresso machine and a panini press. Recently, we did a story about the innermost portion of the six-layered shield around the Majorana Demonstrator project. The shield gives the experiment extra protection from the radiation that permeates through the surrounding rock, especially radon, which can create noise in the experiment. The inner shield is special — it was made with ultrapure electroformed copper grown on the 4850 Level of Sanford Lab. We interviewed physicist Vincent Guiseppe, the mastermind behind the shield, inside the deeply buried class-100 clean room where all the work is done. Despite our precautions, we couldn't go into the clean room without putting on a "bunny suit": Tyvek clothing that includes a hood, booties, two pairs of gloves and a face mask, and we had to maneuver carefully as the research continued around us. It was a challenge, but it was worth it to get the story and a stunning image of the shield. While the lunar landing inspired my generation to look to the cosmos — and inspired me to want to fly to distant planets, see the Milky Way from a distant galaxy, and learn the secrets of the universe — none of us expected to be looking up from nearly a mile underground. But with the right mix of sights and stories, science is inspiring a new generation, while searching for answers to universal questions using tools that are only now reaching for the stars. Follow all of the Expert Voices issues and debates — and become part of the discussion — on Facebook, Twitter and Google+. The views expressed are those of the author and do not necessarily reflect the views of the publisher. This version of the article was originally published on Space.com. Copyright 2015 SPACE.com, a Purch company. All rights reserved. This material may not be published, broadcast, rewritten or redistributed.

Discover hidden collaborations