Time filter

Source Type

Grant
Agency: European Commission | Branch: H2020 | Program: IA | Phase: LCE-09-2015 | Award Amount: 27.97M | Year: 2016

This proposal is an application to the EU programme Horizon 2020 and its topic Large scale energy storage (LCE-09-2015). The presented project STORE&GO will demonstrate three innovative Power to Gas storage concepts at locations in Germany, Switzerland and Italy in order to overcome technical, economic, social and legal barriers. The demonstration will pave the way for an integration of PtG storage into flexible energy supply and distribution systems with a high share of renewable energy. Using methanation processes as bridging technologies, it will demonstrate and investigate in which way these innovative PtG concepts will be able to solve the main problems of renewable energies: fluctuating production of renewable energies; consideration of renewables as suboptimal power grid infrastructure; expensive; missing storage solutions for renewable power at the local, national and European level. At the same time PtG concepts will contribute in maintaining natural gas or SNG with an existing huge European infrastructure and an already advantageous and continuously improving environmental footprint as an important primary/secondary energy carrier, which is nowadays in doubt due to geo-political reasons/conflicts. So, STORE&GO will show that new PtG concepts can bridge the gaps associated with renewable energies and security of energy supply. STORE&GO will rise the acceptance in the public for renewable energy technologies in the demonstration of bridging technologies at three living best practice locations in Europe.


Grant
Agency: European Commission | Branch: H2020 | Program: IA | Phase: LCE-02-2016 | Award Amount: 17.60M | Year: 2016

WiseGRID has two intertwined and equally important strategic goals: on the one hand, it aims at successfully putting in the market, within a horizon of 24 months after project completion, a set of solutions and technologies which increase the smartness, stability and security of an open, consumer-centric European energy grid, with an enhanced use of storage technologies and a highly increased share of RES. On the other hand, the project intends to have a significant impact in the business and innovation activities of the consortium -with a planned ROI for the partners of less than 30 months after commercialisation of WiseGRID products and services starts- and the European sector at large, contributing to the creation of jobs, the access to new energy services of citizens and public/private organisations, the saving of CO2, and the increase of of RES, among other impacts. The achievement of these strategic goals will involve the four aspects addressed by LCE-02-2016: (a) Demand Response, (b) Smartening the Distribution Grid, (c) Demonstrating Energy Storage Technologies and (d) the Smart Integration of Grid Users from Transport. WiseGRID technologies and solutions will be packed within 9 different products, the impact of which will be demonstrated under real life conditions in 4 large scale demonstrators in Belgium, Italy, Spain and Greece-. In order to facilitate the assessment of the performance, transferability and scalability of these solutions, the demonstrations will be conducted following 7 high level use cases.


Grant
Agency: European Commission | Branch: H2020 | Program: IA | Phase: ICT-14-2016-2017 | Award Amount: 3.57M | Year: 2017

In this project we aim at supporting companies operating in the fragmented European ecosystem of the eCommerce, Retail and Marketing industries to increase their efficiency and competitiveness by leveraging deep customer insights that are too challenging for them to obtain today. Improved insights will result from the analysis of large amount of data, acquired from different sources and sectors, and in multiple languages. The integration of consumer and market data collected by different business partners will ensure to cover customer interactions and activities across different channels, providing insights on rich customer journeys. These integrated data will be further enriched with information about weather and events, two crucial factors impacting on consumer choices. By disruptively increasing the analytical power coming from the integration of cross-sectorial and cross-language data sources and new data sources companies will deploy real-time responsive services for digital marketing, reporting-style services for market research, and advanced data and resource management services for Retail & eCommerce and their technology providers. As of today, developing these services is too costly or nearly impossible for a large number of European companies. Even when these companies have developed excellent skills in analyzing data in their sector, they lack knowledge, technology and resources that are needed to integrate and analyze large and divers data in a timely manner. Enriching business data with weather data is difficult and costly. Using event data to obtain precise customer and market insights is even more challenging because of the difficulty of collecting and accessing data about events at a large scale. Language barriers, lack of agreed models and shared systems of identifiers to interlink data make these data integration tasks even only more challenging.


Grant
Agency: European Commission | Branch: H2020 | Program: IA | Phase: IoT-01-2016 | Award Amount: 20.05M | Year: 2017

SynchroniCity represents the first attempt to deliver a Single Digital City Market for Europe by piloting its foundations at scale in 11 reference zones - 8 European cities & 3 more worldwide cities - connecting 34 partners from 11 countries over 4 continents. Building upon a mature European knowledge base derived from initiatives such as OASC, FIWARE, FIRE, EIP-SCC, and including partners with leading roles in standardization bodies, e.g. ITU, ETSI, IEEE, OMA, IETF, SynchroniCity will deliver a harmonized ecosystem for IoT-enabled smart city solutions where IoT device manufacturers, system integrators and solution providers can innovate and openly compete. With an already emerging foundation, SynchroniCity will establish a reference architecture for the envisioned IoT-enabled city market place with identified interoperability points and interfaces and data models for different verticals. This will include tools for co-creation & integration of legacy platforms & IoT devices for urban services and enablers for data discovery, access and licensing lowering the barriers for participation on the market. SynchroniCity will pilot these foundations in the reference zones together with a set of citizen-centred services in three high-impact areas, showing the value to cities, businesses and citizens involved, linked directly to the global market. With a running start, SynchroniCity will serve as lighthouse initiative to inspire others to join the established ecosystem and contribute to the emerging market place. SynchroniCity takes an inclusive approach to grow the ecosystem by inviting businesses and cities to join through an open call, allowing them to participate on the pioneering market place enabling a second wave of successful pilots. They will strengthen the ecosystem by creating a positive ripple effect throughout Europe, and globally, to establish a momentum and critical mass for a strong European presence in a global digital single market of IoT-enabled solutions.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: FCT-01-2015 | Award Amount: 11.99M | Year: 2016

ASGARD has a singular goal, contribute to Law Enforcement Agencies Technological Autonomy and effective use of technology. Technologies will be transferred to end users under an open source scheme focusing on Forensics, Intelligence and Foresight (Intelligence led prevention and anticipation). ASGARD will drive progress in the processing of seized data, availability of massive amounts of data and big data solutions in an ever more connected world. New areas of research will also be addressed. The consortium is configured with LEA end users and practitioners pulling from the Research and Development community who will push transfer of knowledge and innovation. A Community of LEA users is the end point of ASGARD with the technology as a focal point for cooperation (a restricted open source community). In addition to traditional Use Cases and trials, in keeping with open source concepts and continuous integration approaches, ASGARD will use Hackathons to demonstrate its results. Vendor lock-in is addressed whilst also recognising their role and existing investment by LEAs. The project will follow a cyclical approach for early results. Data Set, Data Analytics (multimodal/ multimedia), Data Mining and Visual Analytics are included in the work plan. Technologies will be built under the maxim of It works over Its the best. Rapid adoption/flexible deployment strategies are included. The project includes a licensing and IPR approach coherent with LEA realities and Ethical needs. ASGARD includes a comprehensive approach to Privacy, Ethics, Societal Impact respecting fundamental rights. ASGARD leverages existing trust relationship between LEAs and the research and development industry, and experiential knowledge in FCT research. ASGARD will allow its community of users leverage the benefits of agile methodologies, technology trends and open source approaches that are currently exploited by the general ICT sector and Organised Crime and Terrorist organisations.


Grant
Agency: European Commission | Branch: H2020 | Program: IA | Phase: LCE-02-2016 | Award Amount: 15.84M | Year: 2017

inteGRIDy aims to integrate cutting-edge technologies, solutions and mechanisms in a scalable Cross-Functional Platform connecting energy networks with diverse stakeholders, facilitating optimal and dynamic operation of the Distribution Grid (DG), fostering the stability and coordination of distributed energy resources and enabling collaborative storage schemes within an increasing share of renewables. inteGRIDy will: a) Integrate innovative smart grid technologies, enabling optimal and dynamic operation of the distribution systems assets within high grid reliability and stability standards b) Validate innovative Demand Response technologies and relevant business models c) Utilize storage technologies and their capabilities to relieve the DG and enable significant avoidance of RES curtailment, enhancing self-consumption and net metering d) Enable interconnection with transport and heat networks, forming Virtual Energy Network synergies ensuring energy security e) Provide modelling & profiling extraction for network topology representation, innovative DR mechanisms and Storage characterization, facilitating decision making in DGs operations f) Provide predictive, forecasting tools & scenario-based simulation, facilitating an innovative Operation Analysis Framework g) Develop new business and services to create value for distribution domain stakeholders and end users/prosumers in an emerging electricity market. inteGRIDy will impact on: a) operations by reconfigurable topology control & supervision b) market by providing new services c) customer by enhanced engagement through DR mechanisms d) transmission by novel forecasting scenarios for the MV/LV areas e) part of the production incorporating innovative storage targeting the optimum use of RES f) environment by CO2 reduction inteGRIDy approach will be deployed and validated in 6 large-scale and 4 small-scale real-life demonstration covering different climatic zones and markets with different maturity.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: ICT-10-2016 | Award Amount: 4.51M | Year: 2017

Requirements engineering is a key activity in ICT projects: What are current user needs and what requirements satisfy them? How much effort would a requirement cost and in which release should it be delivered? Which requirements can be reused from similar projects? Are there hidden dependencies or inconsistencies? What trade-offs are acceptable for users and other stakeholders? A satisfactory, efficient answer to these questions is essential for the success for nowadays software projects. OPENREQ leverages modern recommender algorithms, semantic technologies and data-mining to provide intelligent, proactive support for stakeholders survey alternatives and make individual or group decisions. OPENREQ focuses on complex, community-driven ICT projects with various dependencies and stakeholders as in the Telecom, Transportation, and Cross-Platform-Software domain covered in our trials. We will develop, evaluate and disseminate a fully integrated open-source requirements management platform and a set of connectors with the following decision-making capabilities: Requirements Intelligence: monitors the actual software usage, collects stakeholders and users feedback (e.g. from social media), aggregates and visualizes this information as predictive analytics. Stakeholders Personal Recommender: implements advanced recommendation and machine-learning algorithms to assist requirements work, improve a requirements quality, estimate its properties or predict relevant stakeholders. Group Decision Support: enables the stakeholders participation, the resolution of preference conflicts, and the identification of consensus, e.g. during release planning. Dependency Management: semi-automatically identifies requirements dependencies, supports requirements reasoning and reuse of requirements knowledge. With the OPENREQ Interfaces, these capabilities will be integrated into stakeholders workflows and tools including requirements tools, issues trackers and collaboration tools.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: BES-04-2015 | Award Amount: 4.61M | Year: 2017

The last decades witnessed the ever growing effectiveness of Europe-subsidized border protection projects like SIVE and SIVICC. As maritime smuggling from Morocco towards the European borders of Portugal and Spain was combatted more effectively, the criminal modus operandi changed drastically, approaching air routes with cheap and small planes. New drone technology opens opportunity to both manned and unmanned airborne drug transports. Launched from any location and moving at low altitude and speed to mask their presence with the present clutter environment, drones can autonomously reach any landing site under nearly all circumstances. The ALFA system bridges this detection capability gap by drastically improving the situational awareness through the detection of LSS (Low, Small and Slow) manned and unmanned aircraft. ALFA is future-ready as technologies for drone detection will be a part of the system, which will use heterogeneous, easy-to-deploy mobile sensors based on several novel technologies. All sensor data, augmented by other existing sources of information, will be combined using evolved data fusion, providing accurate positional data for targets including eventual indication of the air vehicle type and reliable prediction of its landing site. This information will be communicated to the regional law enforcement units using a secure communication link and mobile device application, drastically improving the reaction time. Final ALFA capabilities will be demonstrated in a realistic operational context using relevant targets and in close cooperation with two principal end users taking part in the consortium. With their active participation, the ALFA system will make a significant contribution to the development of EUROSUR (in particular, cooperating with SIVE and SIVICC) and be suitable for a range of other missions and scenarios such as homeland and event protection and the protection of critical infrastructure.


Grant
Agency: European Commission | Branch: H2020 | Program: IA | Phase: ICT-12-2016 | Award Amount: 10.01M | Year: 2016

Digital technologies underpin innovation and competitiveness across a broad range of market sectors. A key technology to boost such innovation and competitiveness is represented by the full and wide adoption of Open Service Platforms. In fact, they will allow increased competition and market penetration because they should be built on top of royalty-free open specifications, adopting open source reference implementations, and s such allowed to be offered by multiple vendors. The Seventh Framework Programme for Research and Technology Development (FP7) has developed the FIWARE platform which has demonstrated its potential of becoming a service platform of choice, with proven potential for usage by SMEs and startups. This rises to the extent that four main ICT players in Europe with global ambition have put FIWARE in their strategy for market development. More than that, those four players announced the creation of an open to all legal entity, the FIWARE Foundation, to have more stakeholders driving the evolution of FIWARE. Well in this scope, the aim of the FI-NEXT project is to put in place all the measures necessary in order to make FIWARE materializing such a potential. This will achieved pursuing the following objectives: a) bringing FIWARE from an European Open Source project to a global Open Source Community, b) ensuring FIWARE meets the highest quality standards and best technical support, c) positioning FIWARE as the de facto standard for the development of smart applications, and d) ensuring FIWARE Lab to be a self-sustainable environment.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: DRS-11-2015 | Award Amount: 7.30M | Year: 2016

Starting from previous research experiences and tangible outcomes, STORM proposes a set of novel predictive models and improved non-invasive and non-destructive methods of survey and diagnosis, for effective prediction of environmental changes and for revealing threats and conditions that could damage cultural heritage sites. Moreover, STORM will determine how different vulnerable materials, structures and buildings are affected by different extreme weather events together with risks associated to climatic conditions or natural hazards, offering improved, effective adaptation and mitigation strategies, systems and technologies. An integrated system featuring novel sensors (intra fluorescent and wireless acoustic sensors), legacy systems, state of the art platforms (including LiDAR and UAVs), as well as crowdsourcing techniques will be implemented, offering applications and services over an open cloud infrastructure. An important result of STORM will be a cooperation platform for collaboratively collecting and enhancing knowledge, processes and methodologies on sustainable and effective safeguarding and management of European Cultural Heritage. The system will be capable of performing risk assessment on natural hazards taking into account environmental and anthropogenic risks, and of using Complex Events processing. Results will be tested in relevant case studies in five different countries: Italy, Greece, UK, Portugal and Turkey. The sites and consortium have been carefully selected so as to adequately represent the rich European Cultural Heritage, while associate partners that can assist with liaisons and links to other stakeholders and European sites are also included. The project will be carried out by a multidisciplinary team providing all competences needed to assure the implementation of a functional and effective solution to support all the actors involved in the management and preservation of Cultural Heritage sites.

Loading Engineering Ingegneria Informatica SpA collaborators
Loading Engineering Ingegneria Informatica SpA collaborators