Andover, MA, United States
Andover, MA, United States

Enel Green Power S.p.A. is an Italian multinational renewable energy corporation, headquartered in Rome. The company was formed as a subsidiary of the power generation firm Enel in December 2008, grouping its global renewable energy interests. Enel Green Power has operations in over 16 countries across Europe, North and South America. It generates energy principally from hydroelectricity, wind, solar power, geothermal electricity and biomass sources. At the end of September 2011, the company's total worldwide installed capacity was 6,490 MW, which it intends to increase to 10,400 MW by 2015.A 30.8% stake in the company was floated on the Borsa Italiana and Bolsa de Madrid in November 2010, raising €2.6 billion and marking the largest initial public offering in Europe since that of Iberdrola Renovables in December 2007. Wikipedia.

SEARCH FILTERS
Time filter
Source Type

California-based NEXTracker has landed the contract to supply solar trackers to the largest solar power project in the Americas and the western hemisphere. NEXTracker recently announced that it has already shipped trackers for more than 200 megawatts of capacity to a project in Northern Mexico. While the company did not name the project, it is easy to identify the project of this size. A subsidiary of Enel Green Power recently initiated construction of a 752-megawatt solar power park. The Villanueva solar power park will be comprised of two projects that Enel secured through competitive auctions — 427 MW1 Villanueva 1 and 327 MW1 Villanueva 3. The solar power park is expected to begin generation in H2 2018. An estimated 1,700 GWh electricity would be generated from the park every year, or enough to meet the power consumption of more than 1.3 million households. The projects will also offset more than 780,000 tonnes of carbon dioxide emissions. Enel Green Power will invest $650 million in these projects. NEXTracker will support the project by supplying single-axis tracker technology. Over the few months NEXTracker has landed some very large contracts across the world, which have enabled the company to expand its portfolio to 8 gigawatts globally. Adani Green Energy commissioned a 105-megawatt project, one of the largest in north India last year, and used NEXTracker equipment. Being one of the fastest growing solar power markets in the world, India will soon host a manufacturing facility for NEXTracker. The company has already signed agreements with various project developers in India to supply 1 gigawatt of trackers. NEXTracker looks set to expand its presence in India where the solar tracker market is expected to increase from 7% in 2016 to 31% in 2021. Check out our new 93-page EV report. Join us for an upcoming Cleantech Revolution Tour conference! Keep up to date with all the hottest cleantech news by subscribing to our (free) cleantech daily newsletter or weekly newsletter, or keep an eye on sector-specific news by getting our (also free) solar energy newsletter, electric vehicle newsletter, or wind energy newsletter.


Customers ranging from big box stores to individual homeowners are investing in advanced energy across the country. Also in the news this week: A wind turbine was installed every two and a half hours during the first quarter of 2017, and an AEE member company broke ground on the largest solar plant in the Americas. With record-breaking projects and rapid deployment of advanced energy resources, the industry’s future remains bright. More and more, corporations are choosing advanced energy – as of last year 71 Fortune 100 companies and nearly half of Fortune 500 companies have set renewable energy or sustainability targets. Within the past month, for instance, Ikea North America installed solar panels on its new Indiana store, as well as the largest rooftop solar array in Illinois. With these additions, Ikea’s total rooftop solar generation capacity is greater than 42 MW in the U.S. alone. Many corporations are asking utilities to help them choose advanced energy, and utilities are facing a new challenge: provide advanced energy resources or lose big customers to third party providers. This week Utility Dive reported on one rate design tactic utilities are deploying: renewable energy, or “green,” tariffs. Renewable energy tariffs are not new in concept, as such programs have been around to allow highly motivated buyers to pay premium prices to cover the purchase of renewable energy credits. Recently, utilities have been facing direct competition from developers willing to enter into long-term power purchase agreements (PPAs) at competitive prices with a guarantee of steady rates for several years. Utilities have responded by offering more attractive tariffs, and more of them. Utility Dive reports that 13 renewable energy tariffs have been implemented in seven states, and development has accelerated, with more than half added last year alone. The structure of renewable energy tariffs is changing as well. Last month, Puget Sound Energy, Washington state’s largest investor-owned utility, took up a new rate structure that is structured more like community solar than a green tariff. The utility will be the off-taker for a new 130 MW wind project, and will distribute the output among customers who buy into the tariff. The utility expects the customers to largely be mid-sized commercial and institutional customers, entities that don’t have enough demand to warrant an entire renewable energy project with a traditional PPA, but still want the option to choose advanced energy. That said, many utilities are continuing to fail to meet growing corporate demand for advanced energy through programs that are not well received in the market. Dominion Energy, Virginia’s largest utility, offered one of the earliest renewable energy tariffs in the U.S., but not a single company opted to participate. That makes Dominion’s tariff nothing more than a failed pilot program; it expired April 1, with no moves to replace it yet, despite apparent market opportunity. Another Virginia utility, Appalachian Power, has a renewable energy tariff proposal currently before the Virginia State Corporation Commission. Unfortunately, that tariff has problems as well, proposing to charge customers an 18% premium for renewable energy from projects that were built years ago, and they aren’t even in Virginia. We go into more detail about our concerns here. Meanwhile, wind and solar are growing like gangbusters. A new Q1 2017 report from AWEA indicates that wind is having a very good year. Overall, 2,000 MW of new capacity was installed in the first quarter, which is four times what was installed in Q1 2016. As Reuters reports, a quarter of the capacity installed in Q1 is contracted to non-utility purchasers, such as Google, Amazon, and the U.S. Army. Finally, an AEE member, NEXTracker, is involved in what will be the largest solar farm in the Americas, now under construction. When completed next year, the Villanueva Solar Park in Mexico will have a capacity of 754 MW, capable of delivering power to 1.3 million households. The project is being developed by a subsidiary of Enel Green Power, with NEXTracker supplying single-axis trackers. “Mexico, along with India, Australia and the Middle East is part of a new wave of renewable energy markets poised for significant growth over the next few years,” said NEXTracker CEO and AEE board member Dan Shugar. Keep up to date on all the latest news and updates from AEE and the advanced energy industry as a whole by subscribing to our free weekly newsletter:


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: LCE-07-2016-2017 | Award Amount: 5.67M | Year: 2016

The NextBase project, involving 8 research institutions and 6 companies, deals with the development of innovative high-performance c-Si solar cells and modules based on the interdigitated back-contacted silicon heterojunction (IBC-SHJ) solar cell concept targeting cells with efficiency above 26.0% and corresponding solar modules with efficiency above 22.0%. In particular, a number of new design and process innovations throughout the wafer, cell and module fabrication that go beyond the state-of-the-art will be introduced into the device to achieve the targeted efficiency values. At the same time, the NextBase project pursues the development of a new industrial manufacturing tool and low-cost processes for the IBC-SHJ solar cells enabling a competitive IBC-SHJ solar module cost of < 0.35 /Wp.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: LCE-07-2016-2017 | Award Amount: 4.93M | Year: 2016

Current practice in wind turbines operation is that every turbine has its own controller that optimizes its own performance in terms of energy capture and loading. This way of operating wind farms means that each wind turbine operates based only on the available information on its own measurements. This gets the wind farm to operate in a non-optimum way, since wind turbines are not operating as players of a major system. The major reasons for this non-optimum approach of wind farms operation are based on the lack of knowledge and tools which can model the dynamics of the flow inside the wind farm, how wind turbines modifies this flow, and how the wind turbines are affected by the perturbed flow. In addition, this lack of tools deals to also a lack of advanced control solutions, because there are not any available tool which can help on developing and testing virtually advanced control concepts for wind farms. CL-WINDCON will bring up with new innovative solutions based on wind farm open and closed loop advanced control algorithms which will enable to treat the entire wind farm as a unique integrated optimization problem. This will be possible thanks to the development of appropriate dynamic tools for wind farm simulation, at a reasonable computing effort. These tools for wind farm dynamic modelling of wind farm models will be fully open source at the end of the project, while control algorithms will be extensively validated simulations, in wind tunnel tests. Some open loop validations will be performed at wind farm level tests. Proposed control algorithms, useful for future but also for already existing wind farms. Then these will improve the LCOE, as well as the O&M costs will decrease, and improves in terms of reliability the wind turbine and wind farm. These performance improvements will be evaluated for both, wind turbine operation and wind farm operation.


Grant
Agency: European Commission | Branch: H2020 | Program: IA | Phase: LCE-03-2015 | Award Amount: 44.06M | Year: 2015

Our goal with the DEEPEGS project is to demonstrate the feasibility of enhanced geothermal systems (EGS) for delivering energy from renewable resources in Europe. Testing of stimulating technologies for EGS in deep wells in different geologies, will deliver new innovative solutions and models for wider deployments of EGS reservoirs with sufficient permeability for delivering significant amounts of geothermal power across Europe. DEEPEGS will demonstrate advanced technologies in three geothermal reservoir types that provide all unique condition for demonstrating the applicability of this tool bag on different geological conditions. We will demonstrate EGS for widespread exploitation of high enthalpy heat (i) beneath existing hydrothermal field at Reykjanes (volcanic environment) with temperature up to 550C and (ii) very deep hydrothermal reservoirs at Valence (crystalline and sandstone) and Vistrenque (limestone) with temperatures up to 220C. Our consortium is industry driven with five energy companies that are capable of implementing the project goal through cross-fertilisation and sharing of knowledge. The companies are all highly experienced in energy production, and three of them are already delivering power to national grids from geothermal resources. The focus on business cases will demonstrate significant advances in bringing EGS derived energy (TRL6-7) routinely to market exploitation, and has potential to mobilise project outcomes to full market scales following the end of DEEPEGS project. We seek to understand social concerns about EGS deployments, and will address those concerns in a proactive manner, where the environment, health and safety issues are prioritised and awareness raised for social acceptance. We will through risk analysis and hazard mitigation plans ensure that relevant understanding of the risks and how they can be minimised and will be implemented as part of the RTD approaches, and as a core part of the business case development.


Grant
Agency: European Commission | Branch: H2020 | Program: IA | Phase: NMP-15-2015 | Award Amount: 11.85M | Year: 2016

MATChING goal is the reduction of cooling water demand in the energy sector through innovative technological solutions, to be demonstrated in thermal and geothermal power plants. The project targets include an overall saving of water withdrawal of 30% in thermal power generation, and a decrease of evaporative losses up to 15% in geothermal sector. The use of advanced and nano-technology based materials will be leveraged to make economically affordable water saving in power plants and pave the way to the market uptake. All technological areas of plant cooling systems will be affected: cooling tower, steam condenser, cooling water circuit and water conditioning. The use of alternative cooling fluids will be investigated to develop advanced hybrid cooling towers for geothermal high temperature power plants, and hybrid cooled binary cycles for low temperature geothermal fields, combining dry/wet cooling, and closed loop groundwater cooling. To increase available effective water supply at reasonable costs, alternative water sources will be exploited: different membrane based technologies will be used to re-cycle or re-use municipal, process and blow down waters. To improve cooling equipment robustness advanced materials and coatings for cooling tower and condensers will be investigated, allowing increasing concentration cycles or directly using aggressive fluids. Demonstration will take place in partner-owned industrial sites, operating pilot plants in intended environment and/or in demo scale, guaranteeing the achievement of TRL 6 for all the technologies. The demonstration activities and the partnership composition ensures the validation of suitable business models and the finalization of business plans, guaranteeing the technological transfer from industry to market, increasing competitiveness at European level, and impacting on water use in power generation sector.


ARCHETYPE SW550 will design, build and operate the Worlds first industrial size Concentrated Power & Fresh Water Plant based on parabolic trough technology. It will efficiently integrate in a single plant the direct molten salt solar field, a twin tank storage system with a dedicated power block, a fresh water production unit and hybridization biomass system plant. It aims at demonstrating the performances of the Worlds first direct molten salt CSP stand alone plant where the inlet turbine temperature is 530C and molten salts are used directly into the solar trough collectors fully integrating the production of electricity, fresh water and integration with niomass. ARCHETYPE SW550 will also design and develop the innovative key components which will allow to improve the overall efficiency of the plant and to reduce the costs. Performances, costs of operation and life-cycle of components of the integrated fresh water system will be monitored and analyzed to demonstrate the improvements on the thermodynamic cycle. All participants are strongly interested in developing ARCHETYPE SW550 for which relevant commitments and permits are already in place. EGP has a strong experience in design and implementation of industrial power plant expecially in renewable, through respectively expertise of company ENEL Innovation and Engineering. LEC expected from ARCHETYPE SW550 should be 0.21 /kWh; during the operation the values of energy production and the cost of operation will be constantly monitored to verify the LEC. Fresh water production costs will benefit from the integration with the solar fed thermal cycle, thus achieving a monitored advantage in comparison with currently available technologies. Finally, ARCHETYPE SW550 will spread demonstration results all around the Mediterranean areas, potentially connectible to EUs grid and where power and fresh water are needed, in order to foster diffusion of CSP coupled with fresh water production and to allow a faster spreading of this technology.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: LCE-02-2014 | Award Amount: 15.62M | Year: 2015

The aim of the Drilling in dEep, Super-CRitical AMBients of continentaL Europe: DESCRAMBLE project is to develop novel drilling technologies for a proof-of-concept test of reaching deep geothermal resources and to contribute to a low-carbon European society. To achieve this target the first drilling in the world in an intra-continental site at a middle-crustal level will be performed. The test site is an existing dry well in Larderello, Italy, already drilled to a depth of 2.2 km and temperature of 350 C, which will be further drilled to 3-3.5 km to reach super-critical conditions unexpectedly experienced, and not controlled, in a nearby well in 1979. The project will be organized into two main phases: (1) Drilling in super-critical conditions, including drilling components, well materials, design and control; (2) Geo-Scientific activities for predicting and controlling critical conditions, which considers petrological, physical and chemical characterization, simulation and monitoring, including high temperature and pressure tools. Main expected outcomes: Improved drilling concepts in deep crustal conditions New drilling materials, equipment and tools Physical and chemical characterization of deep crustal fluids and rocks The site is perfect for such an experiment, as it is representative of most deep crustal levels in Europe, cost effective since drilling to reach the target is reduced to a minimum, practical due to the high probability of encountering super-critical conditions. The productivity and efficiency of the project are guaranteed by the combination of industrial and research participation and by the recognised expertise of the consortium in geothermal R&D as well as oil and gas drilling, bringing together excellence in the respective sectors. DESCRAMBLE will explore the possibility of reaching extremely high specific productivity per well, up to ten times the standard productivity, with a closed loop, zero emission, and reduced land occupation.

Loading Enel Green Power collaborators
Loading Enel Green Power collaborators