Manatee Road, FL, United States
Manatee Road, FL, United States

Time filter

Source Type

Marlow L.A.,Mayo Medical School | D'Innocenzi J.,Mayo Medical School | Zhang Y.,Mayo Medical School | Rohl S.D.,Mayo Medical School | And 26 more authors.
Journal of Clinical Endocrinology and Metabolism | Year: 2010

Context: Anaplastic thyroid carcinoma (ATC) is a highly aggressive carcinoma in need of therapeutic options. One critical component of drug discovery is the availability of well-characterized cell lines for identification of molecular mechanisms related to tumor biology and drug responsiveness. Up to 42% of human thyroid cancer cell lines are redundant or not of correct tissue origin, and a comprehensive analysis is currently nonexistent. Mechanistically, RhoB has been identified as a novel molecular target for ATC therapy. Objective: The aim was to develop four ATC cell lines detailing genetic, molecular, and phenotypic characteristics and to test five classes of drugs on the cell lines to determine whether they inhibited cell proliferation in a RhoB-dependent fashion. Design: Four cell lines were derived from ATC tumors. Short tandem DNA repeat and mutational status of the originating tumors and cell lines were performed along with molecular and phenotypic characterizations. Compounds were tested for growth inhibition and ability to up-regulate RhoB. Results: Cell line authenticity was confirmed by DNA short tandem repeat analysis. Each proved unique regarding expression of thyroid markers, oncogene status, amplified and deleted genes, and proliferative growth rates. FTI-277, GGTI-286, lovastatin, romidepsin, and UCN-01 up-regulated RhoB and inhibited cell proliferation in a dose-responsive fashion with only romidepsin and FTI-277 being RhoB dependent. Conclusions: Molecular descriptions of thyroid lines were matched to the originating tumors, setting a new standard for cell line characterization. Furthermore, suppressed RhoB is implicated as a molecular target for therapy against ATC because five classes of drugs up-regulate RhoB and inhibit growth dose-responsively. Copyright © 2010 by The Endocrine Society.

Marlow L.A.,Mayo Clinic Comprehensive Cancer Center | von Roemeling C.A.,Mayo Clinic Comprehensive Cancer Center | Cooper S.J.,Mayo Clinic Comprehensive Cancer Center | Zhang Y.,Mayo Clinic Comprehensive Cancer Center | And 11 more authors.
Journal of Cell Science | Year: 2012

The Forkhead transcription factor, FoxO3a, is a known suppressor of primary tumor growth through transcriptional regulation of key genes regulating cell cycle arrest and apoptosis. In many types of cancer, in response to growth factor signaling, FoxO3a is phosphorylated by Akt, resulting in its exclusion from the nucleus. Here we show that FoxO3a remains nuclear in anaplastic thyroid carcinoma (ATC). This correlates with lack of Akt phosphorylation at serine473 in ATC cell lines and tissues of ATC patients, providing a potential explanation for nuclear FoxO3a. Mechanistically, nuclear FoxO3a promotes cell cycle progression by transcriptional upregulation of cyclin A1, promoting proliferation of human ATC cells. Silencing FoxO3a with a reverse genetics approach leads to downregulation of CCNA1 mRNA and protein. These combined data suggest an entirely novel function for FoxO3a in ATC promotion by enhancing cell cycle progression and tumor growth through transcriptional upregulation of cyclin A1. This is clinically relevant since we detected highly elevated CCNA1 mRNA and protein levels in tumor tissues of ATC patients. Our data indicate therapeutic inactivation of FoxO3a may lead to attenuation of tumor expansion in ATC. This new paradigm also suggests caution in relation to current dogma focused upon reactivation of FoxO3a as a therapeutic strategy against cancers harboring active PI3-K and Akt signaling pathways. © 2012.

Marlow L.A.,Mayo Medical School | Bok I.,Mayo Medical School | Smallridge R.C.,Mayo Medical School | Smallridge R.C.,Endocrine Malignancy Working Group | And 2 more authors.
Endocrine-Related Cancer | Year: 2015

Anaplastic thyroid carcinoma is a highly aggressive undifferentiated carcinoma with a mortality rate near 100% due to an assortment of genomic abnormalities which impede the success of therapeutic options. Our laboratory has previously identified that RhoB upregulation serves as a novel molecular therapeutic target and agents upregulating RhoB combined with paclitaxel lead to antitumor synergy. Knowing that histone deacetylase 1 (HDAC1) transcriptionally suppresses RhoB, we sought to extend our findings to other HDACs and to identify the HDAC inhibitor (HDACi) that optimally synergize with paclitaxel. Here we identify HDAC6 as a newly discovered RhoB repressor. By using isoform selective HDAC inhibitors (HDACi) and shRNAs, we show that RhoB has divergent downstream signaling partners, which are dependent on the HDAC isoform that is inhibited. When RhoB upregulates only p21 (cyclin kinase inhibitor) using a class I HDACi (romidepsin), cells undergo cytostasis. When RhoB upregulates BIMEL using class II/(I) HDACi (belinostat or vorinostat), apoptosis occurs. Combinatorial synergy with paclitaxel is dependent upon RhoB and BIMEL while upregulation of RhoB and only p21 blocks synergy. This bifurcated regulation of the cell cycle by RhoB is novel and silencing either p21 or BIMEL turns the previously silenced pathway on, leading to phenotypic reversal. This study intimates that the combination of belinostat/vorinostat with paclitaxel may prove to be an effective therapeutic strategy via the novel observation that class II/(I) HDACi antagonize HDAC6-mediated suppression of RhoB and subsequent BIMEL, thereby promoting antitumor synergy. These overall observations may provide a mechanistic understanding of optimal therapeutic response.

Loading Endocrine Malignancy Working Group collaborators
Loading Endocrine Malignancy Working Group collaborators