Atlanta, GA, United States
Atlanta, GA, United States

Emory University is a private research university in metropolitan Atlanta, located in the Druid Hills section of unincorporated DeKalb County, Georgia, United States. The university was founded as Emory College in 1836 in Oxford, Georgia by the Methodist Episcopal Church and was named in honor of Methodist bishop John Emory. In 1915 the college relocated to metropolitan Atlanta and was rechartered as Emory University.Emory University has nine academic divisions: Emory College of Arts and science, Oxford College, Goizueta Business School, Laney Graduate School, School of Law, School of Medicine, Nell Hodgson Woodruff School of Nursing, Rollins School of Public Health, and the Candler School of Theology. Emory University and the Georgia Institute of Technology have a strong research partnership and jointly administer the Emory-Georgia Tech Predictive Health Institute and the Wallace H. Coulter Department of Biomedical Engineering Program with Peking University in Beijing, China. Emory University and the Georgia Institute of Technology's combined annual research expenditures exceed $1.25 billion.Emory University is 16th among the list of colleges and universities in the United States by endowment, 5th among universities in the United States regarding licensing revenue per dollars spent on research, and 21st in U.S. News & World Report's 2015 National Universities Rankings. The university also ranks as one of the top universities in the world. In 1995 Emory University was elected to the Association of American Universities, an association of the 62 leading research universities in the United States & Canada.The university has nearly 3,000 faculty members; Emory faculty and alumni include international leaders in the fields of politics, business and academia, and its members have been recognized with numerous national and international awards and honors. Wikipedia.

SEARCH FILTERS
Time filter
Source Type

Patent
Dana-Farber Cancer Institute, Brigham, Women's Hospital, Emory University and The President And Fellows Of Harvard College | Date: 2017-02-15

The present invention provides methods and compositions for the treatment, prevention, or reduction of persistent infections, such as chronic infections, latent infections, and slow infections and cancer. The methods and compositions of the invention are also useful for the alleviation of one or more symptoms associated with such infections and cancer.


Patent
Dana-Farber Cancer Institute and Emory University | Date: 2017-02-22

The present invention is based, in part, on the identification of novel human anti-PD-1, PD-L1, and PD-L2 antibodies. Accordingly, the invention relates to compositions and methods for diagnosing, prognosing, and treating conditions that would benefit from modulating PD-1, PD-L1, and/or PD-L2 activity (e.g., persistent infectious diseases, autoimmune diseases, asthma, transplant rejection, inflammatory disorders and tumors) using the novel human anti-PD-1, PD-L1, and PD-L2 antibodies described herein.


This disclosure relates to variable lymphocyte receptors (VLRs) modifications such as humanized sequences and polypeptides comprising such sequences that specifically bind a target molecule and uses related thereto. In certain embodiments, the disclosure relates to recombinant polypeptide VLRs disclosed herein and variants thereof. In certain embodiments, this disclosure relates to treating or preventing a disease or condition comprising administering an effective amount of a recombinant polypeptide or variant disclosed herein to a subject in need thereof.


Patent
Emory University and Dana-Farber Cancer Institute | Date: 2017-02-06

PD-1 antagonists are disclosed that can be used to reduce the expression or activity of PD-1 in a subject. An immune response specific to an infectious agent or to tumor cells can be enhanced using these PD-1 antagonists in conjunction with an antigen from the infectious agent or tumor. Thus, subjects with infections, such as persistent infections can be treated using PD-1 antagonists. In addition, subjects with tumors can be treated using the PD-1 antagonists. In several examples, subjects can be treated by transplanting a therapeutically effective amount of activated T cells that recognize an antigen of interest and by administering a therapeutically effective amount of a PD-1 antagonist. Methods are also disclosed for determining the efficacy of a PD-1 antagonist in a subject administered the PD-1 antagonist. In some embodiments, these methods include measuring proliferation of memory B cells in a sample from a subject administered the PD-1 antagonist.


The disclosure relates to chemokine receptor modulators and uses related thereto. In certain embodiments, the disclosure relates to pharmaceutical compositions comprising compounds disclosed herein or pharmaceutically acceptable salts or prodrugs thereof. In certain embodiments, the compositions disclosed herein are used for managing chemokine related conditions, typically prevention or treatment of viral infections such as HIV or for managing cancer.


Patent
Emory University | Date: 2017-03-08

Systems and methods are configured to treat a tissue by automatically linearly oscillating an instrument into a target site. A system may include a body having a length and configured to receive a portion of the instrument guide member having an exposed end and/or an instrument. The system may further include an actuator member disposed within the body and configured to linearly oscillate the instrument within the instrument guide member a fixed distance past the exposed end. The systems and methods can increase patient comfort while empowering clinicians by simplifying interventions for musculoskeletal disorders.


Patent
Cocrystal Pharma Inc. and Emory University | Date: 2017-02-22

The present invention is directed to compounds, compositions and methods for treating or preventing hepatitis C virus (HCV) infection in human subjects or other animal hosts. The compounds are as also pharmaceutically acceptable, salts, prodrugs, and other derivatives thereof as pharmaceutical compositions and methods for treatment or prevention of HCV infection.


The disclosure relates to chemokine CXCR4 receptor modulators and uses related thereto. In certain embodiments, the disclosure relates to pharmaceutical compositions comprising compounds disclosed herein or pharmaceutically acceptable salts or prodrugs thereof. In certain embodiments, the compositions disclosed herein are used for managing CXCR4 related conditions, typically prevention or treatment of viral infections such as HIV or for managing cancer.


Hamann S.,Emory University
Trends in Cognitive Sciences | Year: 2012

A longstanding controversy in the field of emotion research has concerned whether emotions are better conceptualized in terms of discrete categories, such as fear and anger, or underlying dimensions, such as arousal and valence. In the domain of neuroimaging studies of emotion, the debate has centered on whether neuroimaging findings support characteristic and discriminable neural signatures for basic emotions or whether they favor competing dimensional and psychological construction accounts. This review highlights recent neuroimaging findings in this controversy, assesses what they have contributed to this debate, and offers some preliminary conclusions. Namely, although neuroimaging studies have identified consistent neural correlates associated with basic emotions and other emotion models, they have ruled out simple one-to-one mappings between emotions and brain regions, pointing to the need for more complex, network-based representations of emotion. © 2012 Elsevier Ltd.


Rilling J.K.,Emory University
Trends in Cognitive Sciences | Year: 2014

Comparative neuroimaging can identify unique features of the human brain and teach us about human brain evolution. Comparisons with chimpanzees, our closest living primate relative, are critical in this endeavor. Structural magnetic resonance imaging (MRI) has been used to compare brain size development, brain structure proportions and brain aging. Positron emission tomography (PET) imaging has been used to compare resting brain glucose metabolism. Functional MRI (fMRI) has been used to compare auditory and visual system pathways, as well as resting-state networks of connectivity. Finally, diffusion-weighted imaging (DWI) has been used to compare structural connectivity. Collectively, these methods have revealed human brain specializations with respect to development, cortical organization, connectivity, and aging. These findings inform our knowledge of the evolutionary changes responsible for the special features of the modern human mind. © 2013 Elsevier Ltd.

Loading Emory University collaborators
Loading Emory University collaborators