Time filter

Source Type

Charlotte, NC, United States

Emerson Solutions | Date: 2013-06-14

Ring gate control system and control method are disclosed herein. An example ring gate control system includes a first servomotor group, a second servomotor group, and a third servomotor group. Each servomotor group is associated with a respective control point located around an annular face of a ring gate. The servomotors within the groups coupled to the annular face of the ring gate at respective linkage points, a transmitter coupled to the annular face of the ring gate and a control valve coupled between a hydraulic source and the at least two actuators and a controller coupled to each of the control valves and to each of the transmitters. The controller is separately operating a closed control loop for each servomotor group to control positions of the control points to control a horizontal orientation of the ring gate.

A method and system is provided that includes a setpoint monitor in communication with a controller that operates equipment according to setpoint values, each setpoint value having an associated benchmark value. The setpoint monitor receives setpoint modifications based on communication with the controller, each setpoint modification corresponding to a modification of a setpoint value to a modified value different from the associated benchmark value. A terminal in communication with the setpoint monitor displays the setpoint modifications and receives input to revert a setpoint modification from the modified value back to the associated benchmark value. The setpoint monitor communicates with the controller to revert the setpoint value associated with the setpoint modification from the modified value back to the associated benchmark value.

Agency: Cordis | Branch: H2020 | Program: IA | Phase: LCE-03-2014 | Award Amount: 17.79M | Year: 2015

Predictability and flexibility are key enablers to increase CSP penetration in the energy mix by a) increasing dispatchability b) making CSP less/not reliant on subsidies c) supporting stable grid operation d) enabling operators to access new revenue streams (electricity trading, ancillary services). Today CSP plants with molten salt storage only partly achieve these objectives. Key enabling technologies to be demonstrated and introduced in the market are 1) design and operation of molten salt once-through steam generator This will allow fully flexible plant operation; 2) design and implementation of integrated weather forecasting and dispatch optimization This will allow optimal management of the energy storage to maximize revenues while respecting constraints/commitments (e.g. to the grid). Towards 1), an innovative design approach is proposed, integrating process and equipment design with dynamic simulation of the system. Proven technologies in separate fields (molten salt ; once-through steam generator ; optimum control) will be for the first time integrated and demonstrated. Towards 2), different approaches to DNI forecasting (direct; mesoscale models) will be integrated to extend geographical coverage and improve reliability. Dispatch optimization under conditions of uncertainty (weather forecast) and perturbations (e.g. grid support requests) will be developed. Furthermore, automatic plant performance characterization by machine learning will be implemented to ensure a real optimum is achieved. For succesfull market introduction, a down-scale pilot will be realized. Here, integrated operation of once-through steam generator, weather forecast and dispatch optimization will be demonstrated. CSP will undergo large growth in developing markets, where grid constraints and market liberalization will play a role. Developint these key-enabling technologies will put european industries in the position to compete at the forefront in the market worldwide.

Emerson Solutions | Date: 2015-05-14

A system and method are provided and include an equipment controller for operating a piece of kitchen equipment. The equipment controller has a memory storing an initial menu of food items each having associated operating parameters for operating the kitchen equipment when preparing the associated food item. The system also includes a supervisory controller in communication with the equipment controller and in communication with a remote monitor that receives an updated menu for the kitchen equipment from a remote terminal. The updated menu includes at least one of a food item modification and an operating parameter modification. The supervisory controller receives the updated menu from the remote monitor and communicates the updated menu to the equipment controller for installation by the equipment controller.

Emerson Solutions | Date: 2015-10-19

Embodiments of methods and systems for controlling a load generated by a power generating system may include controlling at least a portion of the system using model-based control techniques. The model-based control techniques may include a dynamic matrix controller (DMC) that receives a load demand and a process variable as inputs and generates a control signal based on the inputs and a stored model. The model may be configured based on parametric testing, and may be modifiable. Other inputs may also be used to determine the control signal. In an embodiment, a turbine is controlled by a first DMC and a boiler is controlled by a second DMC, and the control signals generated by the first and the second DMCs are used in conjunction to control the generated load. Techniques to move the power generating system from Proportional-Integral-Derivative based control to model-based control are also disclosed.

Discover hidden collaborations