Time filter

Source Type

Somerville, NJ, United States

Bekaert J.,IMEC | Doise J.,IMEC | Doise J.,Catholic University of Leuven | Gronheid R.,IMEC | And 5 more authors.
Proceedings of SPIE - The International Society for Optical Engineering

In recent years, major advancements have been made in the directed self-assembly (DSA) of block copolymers (BCP). Insertion of DSA for IC fabrication is seriously considered for the 7 nm node. At this node the DSA technology could alleviate costs for multiple patterning and limit the number of masks that would be required per layer. At imec, multiple approaches for inserting DSA into the 7 nm node are considered. One of the most straightforward approaches for implementation would be for via patterning through templated DSA; a grapho-epitaxy flow using cylindrical phase BCP material resulting in contact hole multiplication within a litho-defined pre-pattern. To be implemented for 7 nm node via patterning, not only the appropriate process flow needs to be available, but also DSA-aware mask decomposition is required. In this paper, several aspects of the imec approach for implementing templated DSA will be discussed, including experimental demonstration of density effect mitigation, DSA hole pattern transfer and double DSA patterning, creation of a compact DSA model. Using an actual 7 nm node logic layout, we derive DSA-friendly design rules in a logical way from a lithographer's view point. A concrete assessment is provided on how DSA-friendly design could potentially reduce the number of Via masks for a place-and-routed N7 logic pattern. © 2015 SPIE. Source

Williamson L.,University of Chicago | Kim J.,EMD Performance Materials Corporation | Cao Y.,Merck Performance Materials | Lin G.,EMD Performance Materials Corporation | And 2 more authors.
Proceedings of SPIE - The International Society for Optical Engineering

Directed self-assembly (DSA) of lamellae-forming block copolymers (BCP) via chemo-epitaxy is a potential lithographic solution to achieve patterns of dense features. Progress to date demonstrates encouraging results, but in order to better understand the role of all parameters, systematic analysis of each factor needs to be assessed. Small changes in the volume fraction of a lamellae-forming BCP have been shown to change the connectivity of unguided domains. When an asymmetric lamellae-forming BCP is assembled on chemical patterns generated with the LiNe flow, the patterning performance and defect modes change depending on whether the majority or minority volume fraction phase is guided by the chemical pattern. Asymmetric BCP formulations were generated by blending homopolymer with a symmetric BCP. The patterning performance of the BCP formulations was assessed for different pattern pitches, guide stripe widths, backfill materials and annealing times. Optical defect inspection and SEM review are used to track the majority defect mode for each formulation. Formulation-dependent trends in defect modes show the importance of optimizing the BCP formulation in order to minimize the defectivity. © 2015 SPIE. Source

Pathangi H.,IMEC | Chan B.T.,IMEC | Bayana H.,IMEC | Vandenbroeck N.,IMEC | And 14 more authors.
Journal of Micro/ Nanolithography, MEMS, and MOEMS

High-defect density in thermodynamics driven directed self-assembly (DSA) flows has been a major cause of concern for a while and several questions have been raised about the relevance of DSA in high-volume manufacturing. The major questions raised in this regard are: (1) What is the intrinsic level of DSA-induced defects? (2) Can we isolate the DSA-induced defects from the other processes-induced defects? (3) How much do the DSA materials contribute to the final defectivity and can this be controlled? (4) How can we understand the root causes of the DSA-induced defects and their kinetics of annihilation? (5) Can we have block copolymer anneal durations that are compatible with standard CMOS fabrication techniques (in the range of minutes) with low-defect levels? We address these important questions and identify the issues and the level of control needed to achieve a stable DSA defect performance. © 2015 Society of Photo-Optical Instrumentation Engineers (SPIE). Source

Doise J.,Catholic University of Leuven | Doise J.,IMEC | Bekaert J.,IMEC | Chan B.T.,IMEC | And 3 more authors.
Proceedings of SPIE - The International Society for Optical Engineering

Directed self-assembly (DSA) of block copolymers (BCP) is considered a promising patterning approach for the 7 nm node and beyond. Specifically, a grapho-epitaxy process using a cylindrical phase BCP may offer an efficient solution for patterning randomly distributed contact holes with sub-resolution pitches, such as found in via and cut mask levels. In any grapho-epitaxy process, the pattern density impacts the template fill (local BCP thickness inside the template) and may cause defects due to respectively over- or underfilling of the template. In order to tackle this issue thoroughly, the parameters that determine template fill and the influence of template fill on the resulting pattern should be investigated. In this work, using three process flow variations (with different template surface energy), template fill is experimentally characterized as a function of pattern density and film thickness. The impact of these parameters on template fill is highly dependent on the process flow, and thus pre-pattern surface energy. Template fill has a considerable effect on the pattern transfer of the DSA contact holes into the underlying layer. Higher fill levels give rise to smaller contact holes and worse critical dimension uniformity. These results are important towards DSA-aware design and show that fill is a crucial parameter in grapho-epitaxy DSA. © 2016 SPIE. Source

Singh A.,IMEC | Singh A.,Catholic University of Leuven | Chan B.T.,IMEC | Parnell D.,Tokyo Electron | And 4 more authors.
Proceedings of SPIE - The International Society for Optical Engineering

The patterning potential of block copolymer (BCP) materials via various directed self-assembly (DSA) schemes has been demonstrated for over a decade. We have previously reported the HONEYCOMB flow; a process flow where we utilize Extreme Ultraviolet Lithography and Oxygen plasma to guide the assembly of cylindrical phase BCPs into regular hexagonal arrays of contact holes [1, 2]. In this work we report the development of a new process flow, the CHIPS flow, where we use ArFi lithography to print guiding patterns for the chemo-epitaxial DSA of BCPs. Using this process flow we demonstrate BCP assembly into hexagonal arrays with sub-25 nm half-pitch and discuss critical steps of the process flow. Additionally, we discuss the influence of under-layer surface energy on the DSA process window and report contact hole metrology results. © 2015 SPIE. Source

Discover hidden collaborations