Time filter

Source Type

Concenco G.,Embrapa Western Agriculture | Salton J.C.,Embrapa CPAO | Secretti M.L.,State University of Mato Grosso do Sul | Mendes P.B.,Universitario da Grande Dourados | And 2 more authors.
Planta Daninha | Year: 2011

This study aims to assess the composition of weed communities as a function of distinct selection factors, at neighboring areas submitted to distinct soil management and diverse use for sixteen years. Four areas submitted to distinct managements (conventional tillage system; no-till system; integration crop/livestock and continuous livestock) were sampled in relation to the occurrence and severity of weed species by the beginning of the planting season, being estimated the relative abundance, relative frequency and relative dominance of each weed species under each area, as well as the Importance Value Index for each species. Areas were also compared by the Sørensen's similarity coefficient. Areas where pasture and grazing were never present, exhibited a number of seedlings of weed species 250% higher than areas periodically or continuously under grazing, while the area of soil covered by weeds was 87% superior at the conventional tillage system in relation to the average of the other treatments. Grass weeds were the most important at the conventional tillage area while broadleaved weeds where more important at the no-till area, probably due also to herbicide selection factors. Under crop/livestock integration there may be the need to care about controlling seedlings of the forage species inside grain crops in succession.

Ceccon G.,Brazilian Company of Agricultural Research Embrapa | Staut L.A.,Embrapa CPAO | Sagrilo E.,Embrapa CPAMN | Machado L.A.Z.,Crop livestock Integration | And 2 more authors.
Revista Brasileira de Ciencia do Solo | Year: 2013

The feasibility of no-tillage in the Cerrado (Savanna-like vegetation of Brazil) depends on the production of sufficient above-ground crop residue, which can be increased by corn-forage intercropping. This study evaluated how above-ground crop residue production and yields of soybean and lateseason corn in a soybean-corn rotation were influenced by the following crops in the year before soybean: corn (Zea mays L.) intercropped with Brachiaria (Urochloa) brizantha cv. Marandu, B. decumbens cv. Basilisk, B. ruziziensis, cv. comum., Panicum maximum cv. Tanzânia, sunn hemp (Crotalaria juncea L.), pigeon pea [Cajanus cajan (L.) Millsp]; sole corn, forage sorghum [Sorghum bicolor (L.) Moench (cv. Santa Elisa)], and ruzi grass. In March 2005, corn and forage species were planted in alternate rows spaced 0.90 m apart, and sole forage species were planted in rows spaced 0.45 m apart. In October 2005, the forages were killed with glyphosate and soybean was planted. After the soybean harvest in March 2006, sole late-season corn was planted in the entire experimental area. Corn grain and stover yields were unaffected by intercropping. Above-ground crop residue was greater when corn was intercropped with Tanzania grass (10.7 Mg ha-1), Marandu (10.1 Mg ha-1), and Ruzi Grass (9.8 Mg ha-1) than when corn was not intercropped (4.0 Mg ha-1). The intercropped treatments increased the percentage of soil surface covered with crop residue. Soybean and corn grain yields were higher after sole ruzi grass and intercropped ruzi grass than after other crops. The intercropping corn with Brachiaria spp. and corn with Panicum spp. increases above-ground crop residue production and maintains nutrients in the soil without reducing late-season corn yield and the viability of no-till in the midwestern region of Brazil.

Concenco G.,Brazilian Company of Agricultural Research EMBRAPA | Ceccon G.,Embrapa CPAO | Sereia R.C.,Embrapa CPAO | Correia I.V.T.,Embrapa CPAO | Galon L.,Federal University of Rio Grande do Sul
Planta Daninha | Year: 2012

Studies related to weed dynamics are essential for agricultural sustainability in tropical soils, as their interference can cause significant yield losses, especially in crops with lower competitive ability. This study aimed to assess the composition of weed communities in the third cropping season in areas submitted to distinct wintercroppings for two consecutive years. Evaluations were made in terms of species composition, level of infestation, and severity of occurrence of each weed species in relation to the others within the same area. The wintercropping management systems were: (1) Brachiaria ruziziensis; (2) corn intercropped with B. ruziziensis; (3) corn and (4) cowpea. Plant communities under these wintercrop systems were evaluated in the third year in terms of relative frequency, relative dominance, relative abundance and importance index for each species. Areas were also compared in terms of species composition by the Sørenseńs similarity coefficient. Two years of distinct wintercrop managements were not enough to cause a significant shift in terms of weed composition and severity in a given area. There is also evidence that some weed species are more favored by specific crops, although the causes of this selective behavior are not fully explored in this article. The presence of B. ruziziensis, either alone or intercropped with corn, resulted in lower similarity coefficients when compared to areas where this species was not present. It is suggested that several mechanisms briefly discussed may be involved in the impact of the presence of B. ruziziensis on the weed community.

Loading Embrapa CPAO collaborators
Loading Embrapa CPAO collaborators