EMBL CRG Research Unit in Systems Biology

Barcelona, Spain

EMBL CRG Research Unit in Systems Biology

Barcelona, Spain
SEARCH FILTERS
Time filter
Source Type

Braunschweig U.,University of Toronto | Barbosa-Morais N.L.,University of Toronto | Barbosa-Morais N.L.,University of Lisbon | Barbosa-Morais N.L.,University of Oxford | And 8 more authors.
Genome Research | Year: 2014

Alternative splicing (AS) of precursor RNAs is responsible for greatly expanding the regulatory and functional capacity of eukaryotic genomes. Of the different classes of AS, intron retention (IR) is the least well understood. In plants and unicellular eukaryotes, IR is the most common form of AS, whereas in animals, it is thought to represent the least prevalent form. Using high-coverage poly(A)+ RNA-seq data, we observe that IR is surprisingly frequent in mammals, affecting transcripts from as many as three-quarters of multiexonic genes.Ahighly correlated set of cis features comprising an "IR code" reliably discriminates retained from constitutively spliced introns. We show that IR acts widely to reduce the levels of transcripts that are less or not required for the physiology of the cell or tissue type in which they are detected. This "transcriptome tuning" function of IR acts through both nonsense-mediated mRNA decay and nuclear sequestration and turnover of IR transcripts. We further show that IR is linked to a cross-talk mechanism involving localized stalling of RNA polymerase II (Pol II) and reduced availability of spliceosomal components. Collectively, the results implicate a global checkpoint-type mechanism whereby reduced recruitment of splicing components coupled to Pol II pausing underlies widespread IR-mediated suppression of inappropriately expressed transcripts. © 2014 Braunschweig et al.


Irimia M.,University of Toronto | Irimia M.,EMBL CRG Research Unit in Systems Biology | Weatheritt R.J.,University of Toronto | Weatheritt R.J.,University of Cambridge | And 21 more authors.
Cell | Year: 2014

Alternative splicing (AS) generates vast transcriptomic and proteomic complexity. However, which of the myriad of detected AS events provide important biological functions is not well understood. Here, we define the largest program of functionally coordinated, neural-regulated AS described to date in mammals. Relative to all other types of AS within this program, 3-15 nucleotide "microexons" display the most striking evolutionary conservation and switch-like regulation. These microexons modulate the function of interaction domains of proteins involved in neurogenesis. Most neural microexons are regulated by the neuronal-specific splicing factor nSR100/SRRM4, through its binding to adjacent intronic enhancer motifs. Neural microexons are frequently misregulated in the brains of individuals with autism spectrum disorder, and this misregulation is associated with reduced levels of nSR100. The results thus reveal a highly conserved program of dynamic microexon regulation associated with the remodeling of protein-interaction networks during neurogenesis, the misregulation of which is linked to autism. © 2014 Elsevier Inc.


Cicin-Sain D.,EMBL CRG Research Unit in Systems Biology | Cicin-Sain D.,University Pompeu Fabra | Pulido A.H.,University Pompeu Fabra | Pulido A.H.,Center for Genomic Regulation | And 12 more authors.
Nucleic Acids Research | Year: 2015

We present SuperFly (http://superfly.crg.eu), a relational database for quantified spatio-temporal expression data of segmentation genes during early development in different species of dipteran insects (flies, midges and mosquitoes). SuperFly has a special focus on emerging non-drosophilid model systems. The database currently includes data of high spatio-temporal resolution for three species: the vinegar fly Drosophila melanogaster, the scuttle fly Megaselia abdita and the moth midge Clogmia albipunctata. At this point, SuperFly covers up to 9 genes and 16 time points per species, with a total of 1823 individual embryos. It provides an intuitive web interface, enabling the user to query and access original embryo images, quantified expression profiles, extracted positions of expression boundaries and integrated datasets, plus metadata and intermediate processing steps. SuperFly is a valuable new resource for the quantitative comparative study of gene expression patterns across dipteran species. Moreover, it provides an interesting test set for systems biologists interested in fitting mathematical gene network models to data. Both of these aspects are essential ingredients for progress toward a more quantitative and mechanistic understanding of developmental evolution. © The Author(s) 2014.


Pinho R.,Stanford University | Pinho R.,Instituto Gulbenkian Of Ciencia | Garcia V.,ETH Zurich | Irimia M.,EMBL CRG Research Unit in Systems Biology | Feldman M.W.,Stanford University
PLoS Computational Biology | Year: 2014

Network motifs have been identified as building blocks of regulatory networks, including gene regulatory networks (GRNs). The most basic motif, autoregulation, has been associated with bistability (when positive) and with homeostasis and robustness to noise (when negative), but its general importance in network behavior is poorly understood. Moreover, how specific autoregulatory motifs are selected during evolution and how this relates to robustness is largely unknown. Here, we used a class of GRN models, Boolean networks, to investigate the relationship between autoregulation and network stability and robustness under various conditions. We ran evolutionary simulation experiments for different models of selection, including mutation and recombination. Each generation simulated the development of a population of organisms modeled by GRNs. We found that stability and robustness positively correlate with autoregulation; in all investigated scenarios, stable networks had mostly positive autoregulation. Assuming biological networks correspond to stable networks, these results suggest that biological networks should often be dominated by positive autoregulatory loops. This seems to be the case for most studied eukaryotic transcription factor networks, including those in yeast, flies and mammals. © 2014 Pinho et al.


Jaeger J.,EMBL CRG Research Unit in Systems Biology | Jaeger J.,University Pompeu Fabra | Monk N.,University of Sheffield
EMBO Reports | Year: 2015

Studying the dynamics of networks rather than the individual components is essential for our understanding of complex regulatory phenomena. Only by adopting process philosophy as the appropriate conceptual framework can the true potential of systems biology be realized. © 2015 The Authors.


Jaeger J.,EMBL CRG Research Unit in Systems Biology | Jaeger J.,University Pompeu Fabra | Monk N.,University of Sheffield
Journal of Physiology | Year: 2014

In this paper, we illustrate how dynamical systems theory can provide a unifying conceptual framework for evolution of biological regulatory systems. Our argument is that the genotype-phenotype map can be characterized by the phase portrait of the underlying regulatory process. The features of this portrait - such as attractors with associated basins and their bifurcations - define the regulatory and evolutionary potential of a system. We show how the geometric analysis of phase space connects Waddington's epigenetic landscape to recent computational approaches for the study of robustness and evolvability in network evolution. We discuss how the geometry of phase space determines the probability of possible phenotypic transitions. Finally, we demonstrate how the active, self-organizing role of the environment in phenotypic evolution can be understood in terms of dynamical systems concepts. This approach yields mechanistic explanations that go beyond insights based on the simulation of evolving regulatory networks alone. Its predictions can now be tested by studying specific, experimentally tractable regulatory systems using the tools of modern systems biology. A systematic exploration of such systems will enable us to understand better the nature and origin of the phenotypic variability, which provides the substrate for evolution by natural selection. © 2014 The Physiological Society.


Wotton K.R.,EMBL CRG Research Unit in Systems Biology | Wotton K.R.,University Pompeu Fabra | Jimenez-Guri E.,EMBL CRG Research Unit in Systems Biology | Jimenez-Guri E.,University Pompeu Fabra | And 2 more authors.
PLoS Genetics | Year: 2015

Axis specification and segment determination in dipteran insects are an excellent model system for comparative analyses of gene network evolution. Antero-posterior polarity of the embryo is established through systems of maternal morphogen gradients. In Drosophila melanogaster, the anterior system acts through opposing gradients of Bicoid (Bcd) and Caudal (Cad), while the posterior system involves Nanos (Nos) and Hunchback (Hb) protein. These systems act redundantly. Both Bcd and Hb need to be eliminated to cause a complete loss of polarity resulting in mirror-duplicated abdomens, so-called bicaudal phenotypes. In contrast, knock-down of bcd alone is sufficient to induce double abdomens in non-drosophilid cyclorrhaphan dipterans such as the hoverfly Episyrphus balteatus or the scuttle fly Megaselia abdita. We investigate conserved and divergent aspects of axis specification in the cyclorrhaphan lineage through a detailed study of the establishment and regulatory effect of maternal gradients in M. abdita. Our results show that the function of the anterior maternal system is highly conserved in this species, despite the loss of maternal cad expression. In contrast, hb does not activate gap genes in this species. The absence of this activatory role provides a precise genetic explanation for the loss of polarity upon bcd knock-down in M. abdita, and suggests a general scenario in which the posterior maternal system is increasingly replaced by the anterior one during the evolution of the cyclorrhaphan dipteran lineage. © 2015 Wotton et al.


Verd B.,EMBL CRG Research Unit in Systems Biology | Verd B.,University Pompeu Fabra | Crombach A.,EMBL CRG Research Unit in Systems Biology | Crombach A.,University Pompeu Fabra | And 2 more authors.
BMC Systems Biology | Year: 2014

Background: Waddington's epigenetic landscape is an intuitive metaphor for the developmental and evolutionary potential of biological regulatory processes. It emphasises time-dependence and transient behaviour. Nowadays, we can derive this landscape by modelling a specific regulatory network as a dynamical system and calculating its so-called potential surface. In this sense, potential surfaces are the mathematical equivalent of the Waddingtonian landscape metaphor. In order to fully capture the time-dependent (non-autonomous) transient behaviour of biological processes, we must be able to characterise potential landscapes and how they change over time. However, currently available mathematical tools focus on the asymptotic (steady-state) behaviour of autonomous dynamical systems, which restricts how biological systems are studied.Results: We present a pragmatic first step towards a methodology for dealing with transient behaviours in non-autonomous systems. We propose a classification scheme for different kinds of such dynamics based on the simulation of a simple genetic toggle-switch model with time-variable parameters. For this low-dimensional system, we can calculate and explicitly visualise numerical approximations to the potential landscape. Focussing on transient dynamics in non-autonomous systems reveals a range of interesting and biologically relevant behaviours that would be missed in steady-state analyses of autonomous systems. Our simulation-based approach allows us to identify four qualitatively different kinds of dynamics: transitions, pursuits, and two kinds of captures. We describe these in detail, and illustrate the usefulness of our classification scheme by providing a number of examples that demonstrate how it can be employed to gain specific mechanistic insights into the dynamics of gene regulation.Conclusions: The practical aim of our proposed classification scheme is to make the analysis of explicitly time-dependent transient behaviour tractable, and to encourage the wider use of non-autonomous models in systems biology. Our method is applicable to a large class of biological processes. © 2014 Verd et al.; licensee BioMed Central Ltd.


Crombach A.,EMBL CRG Research Unit in Systems Biology | Crombach A.,University Pompeu Fabra | Garcia-Solache M.A.,University of Cambridge | Garcia-Solache M.A.,University of Rhode Island | And 2 more authors.
BioSystems | Year: 2014

Understanding the developmental and evolutionary dynamics of regulatory networks is essential if we are to explain the non-random distribution of phenotypes among the diversity of organismic forms. Here, we present a comparative analysis of one of the best understood developmental gene regulatory networks today: the gap gene network involved in early patterning of insect embryos. We use gene circuit models, which are fitted to quantitative spatio-temporal gene expression data for the four trunk gap genes hunchback (hb), Krüppel (Kr), giant (gt), and knirps (kni)/. knirps-like (knl) in the moth midge Clogmia albipunctata, and compare them to equivalent reverse-engineered circuits from our reference species, the vinegar fly Drosophila melanogaster. In contrast to the single network structure we find for D. melanogaster, our models predict four alternative networks for C. albipunctata. These networks share a core structure, which includes the central regulatory feedback between hb and knl. Other interactions are only partially determined, as they differ between our four network structures. Nevertheless, our models make testable predictions and enable us to gain specific insights into gap gene regulation in C. albipunctata. They suggest a less central role for Kr in C. albipunctata than in D. melanogaster, and show that the mechanisms causing an anterior shift of gap domains over time are largely conserved between the two species, although shift dynamics differ. The set of C. albipunctata gene circuit models presented here will be used as the starting point for data-constrained in silico evolutionary simulations to study patterning transitions in the early development of dipteran species. © 2014 The Authors.


Quesnel-Vallieres M.,University of Toronto | Quesnel-Vallieres M.,Mount Sinai Hospital | Irimia M.,University of Toronto | Irimia M.,EMBL CRG Research Unit in Systems Biology | And 3 more authors.
Genes and Development | Year: 2015

Alternative splicing (AS) generates vast transcriptomic complexity in the vertebrate nervous system. However, the extent to which trans-acting splicing regulators and their target AS regulatory networks contribute to nervous system development is not well understood. To address these questions, we generated mice lacking the vertebrateand neural-specific Ser/Arg repeat-related protein of 100 kDa (nSR100/SRRM4). Loss of nSR100 impairs development of the central and peripheral nervous systems in part by disrupting neurite outgrowth, cortical layering in the forebrain, and axon guidance in the corpus callosum. Accompanying these developmental defects are widespread changes in AS that primarily result in shifts to nonneural patterns for different classes of splicing events. The main component of the altered AS program comprises 3- to 27-nucleotide (nt) neural microexons, an emerging class of highly conserved AS events associated with the regulation of protein interaction networks in developing neurons and neurological disorders. Remarkably, inclusion of a 6-nt, nSR100-activated microexon in Unc13b transcripts is sufficient to rescue a neuritogenesis defect in nSR100 mutant primary neurons. These results thus reveal critical in vivo neurodevelopmental functions of nSR100 and further link these functions to a conserved program of neuronal microexon splicing. © 2015 Quesnel-Vallières et al.

Loading EMBL CRG Research Unit in Systems Biology collaborators
Loading EMBL CRG Research Unit in Systems Biology collaborators