Time filter

Source Type

Concepción, Chile

Ricci C.,University of Santiago de Chile | Bauer F.E.,University of Santiago de Chile | Bauer F.E.,Millennium Institute of Astrophysics | Bauer F.E.,Space Science Institute | And 13 more authors.
Astrophysical Journal | Year: 2016

We report the detection of a heavily obscured active galactic nucleus (AGN) in the luminous infrared galaxy (LIRG) NGC 6286 identified in a 17.5 ks Nuclear Spectroscopic Telescope Array observation. The source is in an early merging stage and was targeted as part of our ongoing NuSTAR campaign observing local luminous and ultra-luminous infrared galaxies in different merger stages. NGC 6286 is clearly detected above 10 keV and by including the quasi-simultaneous Swift/XRT and archival XMM-Newton and Chandra data, we find that the source is heavily obscured (NH ≃(0.95-1.32) ×1024 cm-2) with a column density consistent with being Compton-thick (CT, ). The AGN in NGC 6286 has a low absorption-corrected luminosity (L2-10 keV ∼ 3-20 ×1041 erg s-1) and contributes ≲1% to the energetics of the system. Because of its low luminosity, previous observations carried out in the soft X-ray band (<10 keV) and in the infrared did not notice the presence of a buried AGN. NGC 6286 has multiwavelength characteristics typical of objects with the same infrared luminosity and in the same merger stage, which might imply that there is a significant population of obscured low-luminosity AGNs in LIRGs that can only be detected by sensitive hard X-ray observations. © 2016. The American Astronomical Society. All rights reserved.. Source

Ricci C.,University of Santiago de Chile | Bauer F.E.,University of Santiago de Chile | Bauer F.E.,Millennium Institute of Astrophysics | Bauer F.E.,Space Science Institute | And 15 more authors.
Astrophysical Journal | Year: 2016

We present results of five Nuclear Spectroscopic Telescope Array (NuSTAR) observations of the type 2 active galactic nucleus (AGN) in IC 751, three of which were performed simultaneously with XMM-Newton or Swift/X-Ray Telescope. We find that the nuclear X-ray source underwent a clear transition from a Compton-thick () to a Compton-thin () state on timescales of months, which makes IC 751 the first changing look AGN discovered by NuSTAR. Changes of the line of sight column density at the ∼2σ level are also found on a timescale of ∼48 hr (). From the lack of spectral variability on timescales of ∼100 ks, we infer that the varying absorber is located beyond the emission-weighted average radius of the broad-line region (BLR), and could therefore be related either to the external part of the BLR or a clumpy molecular torus. By adopting a physical torus X-ray spectral model, we are able to disentangle the column density of the non-varying absorber () from that of the varying clouds , and to constrain that of the material responsible for the reprocessed X-ray radiation (). We find evidence of significant intrinsic X-ray variability, with the flux varying by a factor of five on timescales of a few months in the 2-10 and 10-50 keV band. © 2016. The American Astronomical Society. All rights reserved.. Source

Annuar A.,Durham University | Gandhi P.,Durham University | Gandhi P.,University of Southampton | Alexander D.M.,Durham University | And 28 more authors.
Astrophysical Journal | Year: 2015

We present two Nuclear Spectroscopic Telescope Array (NuSTAR) observations of the local Seyfert 2 active galactic nucleus (AGN) and an ultraluminous X-ray source (ULX) candidate in NGC 5643. Together with archival data from Chandra, XMM-Newton, and Swift-BAT, we perform a high-quality broadband spectral analysis of the AGN over two decades in energy (∼0.5-100 keV). Previous X-ray observations suggested that the AGN is obscured by a Compton-thick (CT) column of obscuring gas along our line of sight. However, the lack of high-quality 10 keV observations, together with the presence of a nearby X-ray luminous source, NGC 5643 X-1, have left significant uncertainties in the characterization of the nuclear spectrum. NuSTAR now enables the AGN and NGC 5643 X-1 to be separately resolved above 10 keV for the first time and allows a direct measurement of the absorbing column density toward the nucleus. The new data show that the nucleus is indeed obscured by a CT column of NH 5 × 1024 cm-2. The range of 2-10 keV absorption-corrected luminosity inferred from the best-fitting models is L2-10,int = (0.8-1.7) × 1042 erg s-1, consistent with that predicted from multiwavelength intrinsic luminosity indicators. In addition, we also study the NuSTAR data for NGC 5643 X-1 and show that it exhibits evidence of a spectral cutoff at energy E ∼ 10 keV, similar to that seen in other ULXs observed by NuSTAR. Along with the evidence for significant X-ray luminosity variations in the 3-8 keV band from 2003 to 2014, our results further strengthen the ULX classification of NGC 5643 X-1. © 2015. The American Astronomical Society. All rights reserved.. Source

Bauer F.E.,University of Santiago de Chile | Bauer F.E.,Millenium Institute of Astrophysics | Bauer F.E.,Space Science Institute | Arevalo P.,EMBIGGEN Anillo | And 32 more authors.
Astrophysical Journal | Year: 2015

We report on high-energy X-ray observations of the Compton-thick Seyfert 2 galaxy NGC 1068 with NuSTAR, which provide the best constraints to date on its >10 keV spectral shape. The NuSTAR data are consistent with those from past and current instruments to within cross-calibration uncertainties, and we find no strong continuum or line variability over the past two decades, which is in line with its X-ray classification as a reflection-dominated Compton-thick active galactic nucleus. The combined NuSTAR, Chandra, XMM-Newton, and Swift BAT spectral data set offers new insights into the complex secondary emission seen instead of the completely obscured transmitted nuclear continuum. The critical combination of the high signal-to-noise NuSTAR data and the decomposition of the nuclear and extranuclear emission with Chandra allow us to break several model degeneracies and greatly aid physical interpretation. When modeled as a monolithic (i.e., a single NH) reflector, none of the common Compton reflection models are able to match the neutral fluorescence lines and broad spectral shape of the Compton reflection hump without requiring unrealistic physical parameters (e.g., large Fe overabundances, inconsistent viewing angles, or poor fits to the spatially resolved spectra). A multi-component reflector with three distinct column densities (e.g., with best-fit values of NH of 1.4 × 1023, 5.0 × 1024, and 1025 cm-2) provides a more reasonable fit to the spectral lines and Compton hump, with near-solar Fe abundances. In this model, the higher NH component provides the bulk of the flux to the Compton hump, while the lower NH component produces much of the line emission, effectively decoupling two key features of Compton reflection. We find that ≈30% of the neutral Fe K-α line flux arises from >2″ (≈140 pc) and is clearly extended, implying that a significant fraction (and perhaps most) of the <10 keV reflected component arises from regions well outside a parsec-scale torus. These results likely have ramifications for the interpretation of Compton-thick spectra from observations with poorer signal-to-noise and/or more distant objects. © 2015. The American Astronomical Society. All rights reserved.. Source

Puccetti S.,ASDC ASI | Puccetti S.,National institute for astrophysics | Comastri A.,National institute for astrophysics | Bauer F.E.,EMBIGGEN Anillo | And 31 more authors.
Astronomy and Astrophysics | Year: 2016

We present a broadband (∼0.3-70 keV) spectral and temporal analysis of NuSTAR observations of the luminous infrared galaxy NGC 6240 combined with archival Chandra, XMM-Newton, and BeppoSAX data. NGC 6240 is a galaxy in a relatively early merger state with two distinct nuclei separated by ∼1″.5. Previous Chandra observations resolved the two nuclei and showed that they are both active and obscured by Compton-thick material. Although they cannot be resolved by NuSTAR, we were able to clearly detect, for the first time, both the primary and the reflection continuum components thanks to the unprecedented quality of the NuSTAR data at energies >10 keV. The NuSTAR hard X-ray spectrum is dominated by the primary continuum piercing through an absorbing column density which is mildly optically thick to Compton scattering (τ ≃ 1.2, NH ∼ 1.5 × 1024 cm-2). We detect moderately hard X-ray (>10 keV) flux variability up to 20% on short (15-20 ks) timescales. The amplitude of the variability is largest at ∼30 keV and is likely to originate from the primary continuum of the southern nucleus. Nevertheless, the mean hard X-ray flux on longer timescales (years) is relatively constant. Moreover, the two nuclei remain Compton-thick, although we find evidence of variability in the material along the line of sight with column densities NH ≤ 2 × 1023 cm-2 over long (∼3-15 yr) timescales. The observed X-ray emission in the NuSTAR energy range is fully consistent with the sum of the best-fit models of the spatially resolved Chandra spectra of the two nuclei. © ESO, 2016. Source

Discover hidden collaborations