Time filter

Source Type

Marin, Switzerland

The time base includes an oscillator generating a periodic signal, a frequency divider circuit formed by a division chain defining several division stages and a circuit for adjusting the divided frequency by inhibiting, in each inhibition period of a plurality of successive inhibition periods, an integer number of clocking pulses at the input of a given stage of the division chain. The time base is arranged to produce, in each inhibition period, a first real number corresponding to the real number of clocking pulses that must be removed to be precise and the adjustment circuit is arranged to calculate, in each inhibition period, a second real number equal to the addition of the first real number and the fractional part of the second real number obtained in the preceding inhibition period, the integer part of this second real number defining the number of clocking pulses to be inhibited in each inhibition period.

The physical parameter measurement method is performed using an electronic circuit (

EM Microelectronic-Marin | Date: 2015-08-03

A circuit configuration for secure application includes several internal frequency detectors arranged in digital units at critical points of an integrated circuit. The clock detectors are concealed in the digital part of the integrated circuit each as a standard cell (flip-flop unit) in order to prevent any external manipulation and in order to hide its function. The clock detectors are preferably disposed in a clock tree topology, which can be at several levels for distributing the clock signal through the different digital unit tree at critical points. Alarms are generated via a clock detector network if at any level an external clock attack has been monitored.

EM Microelectronic-Marin | Date: 2015-02-26

The present invention relates to a fault detection assembly of an integrated circuit having a supply port, an input port and a ground port. The fault detection assembly comprises a first diode connected with one end to the supply port and connected with the other end to the input port, a second diode connected with one end to the input port and connected with the other end to the ground port, at least a first fault detection transistor of MOS type. At least one of first and second diodes comprises a first diode-connected MOS transistor whose gate is connected to the gate of the first fault detection transistor.

EM Microelectronic-Marin | Date: 2015-05-06

The electronic device includes a battery, an electrical energy generator and, between the generator and the battery, an inductive voltage boost converter. The device further includes a circuit for measuring the voltage supplied by the generator which is formed by: a measuring capacitor arranged in parallel with the battery and having a measuring terminal connected to a voltage measuring circuit, a diode located between the inductor output terminal and the measuring terminal, a switch arranged between the measuring terminal and the earth terminal. A control unit is arranged to periodically activate a mode for measuring a voltage at the measuring terminal. The measuring capacitor is selected such that the measuring voltage is much higher than the generator voltage and lower than the battery voltage at a minimum generator voltage allowing charging of the battery.

Discover hidden collaborations