Time filter

Source Type

Szollosi G.J.,University Claude Bernard Lyon 1 | Szollosi G.J.,University of Lyon | Szollosi G.J.,ELTE MTA Lendulet Biophysics Research Group | Rosikiewicz W.,Adam Mickiewicz University | And 8 more authors.
Systematic Biology | Year: 2013

Gene trees record the combination of gene-level events, such as duplication, transfer and loss (DTL), and species-level events, such as speciation and extinction. Gene tree-species tree reconciliation methods model these processes by drawing gene trees into the species tree using a series of gene and species-level events. The reconstruction of gene trees based on sequence alone almost always involves choosing between statistically equivalent or weakly distinguishable relationships that could be much better resolved based on a putative species tree. To exploit this potential for accurate reconstruction of gene trees, the space of reconciled gene trees must be explored according to a joint model of sequence evolution and gene tree-species tree reconciliation. Here we present amalgamated likelihood estimation (ALE), a probabilistic approach to exhaustively explore all reconciled gene trees that can be amalgamated as a combination of clades observed in a sample of gene trees. We implement the ALE approach in the context of a reconciliation model (Szöllo{double acute}si et al. 2013), which allows for the DTL of genes. We use ALE to efficiently approximate the sum of the joint likelihood over amalgamations and to find the reconciled gene tree that maximizes the joint likelihood among all such trees. We demonstrate using simulations that gene trees reconstructed using the joint likelihood are substantially more accurate than those reconstructed using sequence alone. Using realistic gene tree topologies, branch lengths, and alignment sizes, we demonstrate that ALE produces more accurate gene trees even if the model of sequence evolution is greatly simplified. Finally, examining 1099 gene families from 36 cyanobacterial genomes we find that joint likelihood-based inference results in a striking reduction in apparent phylogenetic discord, with respectively. 24%, 59%, and 46% reductions in the mean numbers of duplications, transfers, and losses per gene family. The open source implementation of ALE is available from https://github.com/ssolo/ALE.git. © The Author(s) 2013.


Daubin V.,University of Lyon | Daubin V.,University Claude Bernard Lyon 1 | Szollosi G.J.,ELTE MTA Lendulet Biophysics Research Group
Cold Spring Harbor Perspectives in Biology | Year: 2016

Microbes acquire DNA from a variety of sources. The last decades, which have seen the development of genome sequencing, have revealed that horizontal gene transfer has been a major evolutionary force that has constantly reshaped genomes throughout evolution. However, because the history of life must ultimately be deduced from gene phylogenies, the lack of methods to account for horizontal gene transfer has thrown into confusion the very concept of the tree of life. As a result, many questions remain open, but emerging methodological developments promise to use information conveyed by horizontal gene transfer that remains unexploited today. © 2016 Cold Spring Harbor Laboratory Press; All rights reserved.


Groussin M.,University Claude Bernard Lyon 1 | Hobbs J.K.,University of Waikato | Szollosi G.J.,University Claude Bernard Lyon 1 | Szollosi G.J.,ELTE MTA Lendulet Biophysics Research Group | And 3 more authors.
Molecular Biology and Evolution | Year: 2015

The resurrection of ancestral proteins provides direct insight into how natural selection has shaped proteins found in nature. By tracing substitutions along a gene phylogeny, ancestral proteins can be reconstructed in silico and subsequently synthesized in vitro. This elegant strategy reveals the complex mechanisms responsible for the evolution of protein functions and structures. However, to date, all protein resurrection studies have used simplistic approaches for ancestral sequence reconstruction (ASR), including the assumption that a single sequence alignment alone is sufficient to accurately reconstruct the history of the gene family. The impact of such shortcuts on conclusions about ancestral functions has not been investigated. Here, we show with simulations that utilizing information on species history using a model that accounts for the duplication, horizontal transfer, and loss (DTL) of genes statistically increases ASR accuracy. This underscores the importance of the tree topology in the inference of putative ancestors. We validate our in silico predictions using in vitro resurrection of the LeuB enzyme for the ancestor of the Firmicutes, a major and ancient bacterial phylum. With this particular protein, our experimental results demonstrate that information on the species phylogeny results in a biochemically more realistic and kinetically more stable ancestral protein. Additional resurrection experiments with different proteins are necessary to statistically quantify the impact of using species tree-aware gene trees on ancestral protein phenotypes. Nonetheless, our results suggest the need for incorporating both sequence and DTL information in future studies of protein resurrections to accurately define the genotype-phenotype space in which proteins diversify. © 2014 The Author. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.


Szllosi G.J.,ELTE MTA Lendulet Biophysics Research Group | Tannier E.,University Claude Bernard Lyon 1 | Tannier E.,University of Lyon | Tannier E.,Institute National Of Recherche En Informatique Et En Automatique Rhone Alpes | And 4 more authors.
Systematic Biology | Year: 2015

This article reviews the various models that have been used to describe the relationships between gene trees and species trees. Molecular phylogeny has focused mainly on improving models for the reconstruction of gene trees based on sequence alignments. Yet, most phylogeneticists seek to reveal the history of species. Although the histories of genes and species are tightly linked, they are seldom identical, because genes duplicate, are lost or horizontally transferred, and because alleles can coexist in populations for periods that may span several speciation events. Building models describing the relationship between gene and species trees can thus improve the reconstruction of gene trees when a species tree is known, and vice versa. Several approaches have been proposed to solve the problem in one direction or the other, but in general neither gene trees nor species trees are known. Only a few studies have attempted to jointly infer gene trees and species trees. These models account for gene duplication and loss, transfer or incomplete lineage sorting. Some of them consider several types of events together, but none exists currently that considers the full repertoire of processes that generate gene trees along the species tree. Simulations as well as empirical studies on genomic data show that combining gene tree-species tree models with models of sequence evolution improves gene tree reconstruction. In turn, these better gene trees provide a more reliable basis for studying genome evolution or reconstructing ancestral chromosomes and ancestral gene sequences. We predict that gene tree-species tree methods that can deal with genomic data sets will be instrumental to advancing our understanding of genomic evolution. © 2014 © The Author(s) 2014. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.


Szollosi G.J.,Elte Mta Lendulet Biophysics Research Group | Davin A.A.,University of Lyon | Tannier E.,University of Lyon | Tannier E.,Institute National Of Recherche En Informatique Et En Automatique Rhone Alpes | And 4 more authors.
Philosophical Transactions of the Royal Society B: Biological Sciences | Year: 2015

Although the role of lateral gene transfer is well recognized in the evolution of bacteria, it is generally assumed that it has had less influence among eukaryotes. To explore this hypothesis, we compare the dynamics of genome evolution in two groups of organisms: cyanobacteria and fungi. Ancestral genomes are inferred in both clades using two types of methods: first, Count, a gene tree unaware method that models gene duplications, gains and losses to explain the observed numbers of genes present in a genome; second, ALE, a more recent gene tree-aware method that reconciles gene trees with a species tree using a model of gene duplication, loss and transfer. We compare their merits and their ability to quantify the role of transfers, and assess the impact of taxonomic sampling on their inferences. We present what we believe is compelling evidence that gene transfer plays a significant role in the evolution of fungi. © 2015 The Authors.


PubMed | University Claude Bernard Lyon 1, University of Lyon and ELTE MTA Lendulet Biophysics Research Group
Type: Journal Article | Journal: Philosophical transactions of the Royal Society of London. Series B, Biological sciences | Year: 2015

Although the role of lateral gene transfer is well recognized in the evolution of bacteria, it is generally assumed that it has had less influence among eukaryotes. To explore this hypothesis, we compare the dynamics of genome evolution in two groups of organisms: cyanobacteria and fungi. Ancestral genomes are inferred in both clades using two types of methods: first, Count, a gene tree unaware method that models gene duplications, gains and losses to explain the observed numbers of genes present in a genome; second, ALE, a more recent gene tree-aware method that reconciles gene trees with a species tree using a model of gene duplication, loss and transfer. We compare their merits and their ability to quantify the role of transfers, and assess the impact of taxonomic sampling on their inferences. We present what we believe is compelling evidence that gene transfer plays a significant role in the evolution of fungi.


PubMed | University Claude Bernard Lyon 1 and ELTE MTA Lendulet Biophysics Research Group
Type: Journal Article | Journal: Cold Spring Harbor perspectives in biology | Year: 2016

Microbes acquire DNA from a variety of sources. The last decades, which have seen the development of genome sequencing, have revealed that horizontal gene transfer has been a major evolutionary force that has constantly reshaped genomes throughout evolution. However, because the history of life must ultimately be deduced from gene phylogenies, the lack of methods to account for horizontal gene transfer has thrown into confusion the very concept of the tree of life. As a result, many questions remain open, but emerging methodological developments promise to use information conveyed by horizontal gene transfer that remains unexploited today.


Sugihara K.,ETH Zurich | Chami M.,University of Basel | Derenyi I.,Eötvös Loránd University | Derenyi I.,ELTE MTA Lendulet Biophysics Research Group | And 2 more authors.
ACS Nano | Year: 2012

Conventional lipid-tube formation is based on either a tube phase of certain lipids or the shape transformation of lamellar structures by applying a point load. In the present study, lipid blocks in inverted hexagonal phase made of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) were shown to protrude lipid nanotubes upon a fluid-dynamic flow on polyelectrolyte-functionalized surfaces in physiological buffer solution. The outer diameter of the tubes is 19.1 ± 4.5 nm and their lengths are up to several hundred micrometers. The method described enables the alignment and patterning of lipid nanotubes into various (including curvy) shapes with a microfluidic system. © 2012 American Chemical Society.


PubMed | CNRS Biometry and Evolutionary Biology Laboratory, ELTE MTA Lendulet Biophysics Research Group, Dalhousie University and Massachusetts Institute of Technology
Type: Journal Article | Journal: Molecular biology and evolution | Year: 2016

In a recent article, Nelson-Sathi et al. (NS) report that the origins of major archaeal lineages (MAL) correspond to massive group-specific gene acquisitions via HGT from bacteria (Nelson-Sathi et al. 2015. Origins of major archaeal clades correspond to gene acquisitions from bacteria. Nature 517(7532):77-80.). If correct, this would have fundamental implications for the process of diversification in microbes. However, a reexamination of these data and results shows that the methodology used by NS systematically inflates the number of genes acquired at the root of each MAL, and incorrectly assumes bacterial origins for these genes. A reanalysis of their data with appropriate phylogenetic models accounting for the dynamics of gene gain and loss between lineages supports the continuous acquisition of genes over long periods in the evolution of Archaea.


PubMed | Ecole Polytechnique - Palaiseau, Montpellier University, Simon Fraser University and ELTE MTA Lendulet Biophysics Research Group
Type: Journal Article | Journal: Bioinformatics (Oxford, England) | Year: 2016

: A gene tree-species tree reconciliation explains the evolution of a gene tree within the species tree given a model of gene-family evolution. We describe ecceTERA, a program that implements a generic parsimony reconciliation algorithm, which accounts for gene duplication, loss and transfer (DTL) as well as speciation, involving sampled and unsampled lineages, within undated, fully dated or partially dated species trees. The ecceTERA reconciliation model and algorithm generalize or improve upon most published DTL parsimony algorithms for binary species trees and binary gene trees. Moreover, ecceTERA can estimate accurate species-tree aware gene trees using amalgamation.ecceTERA is freely available under http://mbb.univ-montp2.fr/MBB/download_sources/16__ecceTERA and can be run online at http://mbb.univ-montp2.fr/MBB/subsection/softExec.php?soft=ecceteraceline.scornavacca@umontpellier.frSupplementary data are available at Bioinformatics online.

Loading ELTE MTA Lendulet Biophysics Research Group collaborators
Loading ELTE MTA Lendulet Biophysics Research Group collaborators