Else Kroner Fresenius Stiftung Professorship University Hospital Erlangen

Erlangen, Germany

Else Kroner Fresenius Stiftung Professorship University Hospital Erlangen

Erlangen, Germany
SEARCH FILTERS
Time filter
Source Type

Pottler M.,Else Kroner Fresenius Stiftung Professorship University Hospital Erlangen | Staicu A.,Else Kroner Fresenius Stiftung Professorship University Hospital Erlangen | Zaloga J.,Else Kroner Fresenius Stiftung Professorship University Hospital Erlangen | Unterweger H.,Else Kroner Fresenius Stiftung Professorship University Hospital Erlangen | And 7 more authors.
International Journal of Molecular Sciences | Year: 2015

Nanoparticles that are aimed at targeting cancer cells, but sparing healthy tissue provide an attractive platform of implementation for hyperthermia or as carriers of chemotherapeutics. According to the literature, diverse effects of nanoparticles relating to mammalian reproductive tissue are described. To address the impact of nanoparticles on cyto-and genotoxicity concerning the reproductive system, we examined the effect of superparamagnetic iron oxide nanoparticles (SPIONs) on granulosa cells, which are very important for ovarian function and female fertility. Human granulosa cells (HLG-5) were treated with SPIONs, either coated with lauric acid (SEONLA) only, or additionally with a protein corona of bovine serum albumin (BSA, SEONLA-BSA), or with dextran (SEONDEX). Both micronuclei testing and the detection of H2A.X revealed no genotoxic effects of SEONLA-BSA, SEONDEX or SEONLA. Thus, it was demonstrated that different coatings of SPIONs improve biocompatibility, especially in terms of genotoxicity towards cells of the reproductive system. © 2015 by the authors, licensee MDPI, Basel, Switzerland.

Loading Else Kroner Fresenius Stiftung Professorship University Hospital Erlangen collaborators
Loading Else Kroner Fresenius Stiftung Professorship University Hospital Erlangen collaborators