Little Rock, AR, United States
Little Rock, AR, United States

Time filter

Source Type

Ayyadevara S.,ellan Veterans Medical Center | Ayyadevara S.,University of Arkansas for Medical Sciences | Balasubramaniam M.,University of Arkansas for Medical Sciences | Gao Y.,U.S. Food and Drug Administration | And 4 more authors.
Aging Cell | Year: 2015

Age-dependent neurodegenerative diseases progressively form aggregates containing both shared components (e.g., TDP-43, phosphorylated tau) and proteins specific to each disease. We investigated whether diverse neuropathies might have additional aggregation-prone proteins in common, discoverable by proteomics. Caenorhabditis elegans expressing unc-54p/Q40::YFP, a model of polyglutamine array diseases such as Huntington's, accrues aggregates in muscle 2-6 days posthatch. These foci, isolated on antibody-coupled magnetic beads, were characterized by high-resolution mass spectrometry. Three Q40::YFP-associated proteins were inferred to promote aggregation and cytotoxicity, traits reduced or delayed by their RNA interference knockdown. These RNAi treatments also retarded aggregation/cytotoxicity in Alzheimer's disease models, nematodes with muscle or pan-neuronal Aβ1-42 expression and behavioral phenotypes. The most abundant aggregated proteins are glutamine/asparagine-rich, favoring hydrophobic interactions with other random-coil domains. A particularly potent modulator of aggregation, CRAM-1/HYPK, contributed < 1% of protein aggregate peptides, yet its knockdown reduced Q40::YFP aggregates 72-86% (P < 10-6). In worms expressing Aβ1-42, knockdown of cram-1 reduced β-amyloid 60% (P < 0.002) and slowed age-dependent paralysis > 30% (P < 10-6). In wild-type worms, cram-1 knockdown reduced aggregation and extended lifespan, but impaired early reproduction. Protection against seeded aggregates requires proteasome function, implying that normal CRAM-1 levels promote aggregation by interfering with proteasomal degradation of misfolded proteins. Molecular dynamic modeling predicts spontaneous and stable interactions of CRAM-1 (or human orthologs) with ubiquitin, and we verified that CRAM-1 reduces degradation of a tagged-ubiquitin reporter. We propose that CRAM-1 exemplifies a class of primitive chaperones that are initially protective and highly beneficial for early reproduction, but ultimately impair aggregate clearance and limit longevity. © 2014 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.


Ayyadevara S.,ellan Veterans Medical Center | Ayyadevara S.,University of Arkansas for Medical Sciences | Balasubramaniam M.,ellan Veterans Medical Center | Balasubramaniam M.,University of Arkansas for Medical Sciences | And 6 more authors.
Oncotarget | Year: 2016

Class-I phosphatidylinositol 3-kinase (PI3KI) converts phosphatidylinositol 4,5-bisphosphate (PIP2) to phosphatidylinositol 3,4,5-triphosphate (PIP3). PIP3 comprises two fatty-acid chains that embed in lipid-bilayer membranes, joined by glycerol to inositol triphosphate. Proteins with domains that specifically bind that head-group (e.g. pleckstrin-homology [PH] domains) are thus tethered to the inner plasma-membrane surface where they have an enhanced likelihood of interaction with other PIP3-bound proteins, in particular other components of their signaling pathways. Null alleles of the C. elegans age-1 gene, encoding the catalytic subunit of PI3KI, lack any detectable class-I PI3K activity and so cannot form PIP3. These mutant worms survive almost 10-fold longer than the longest-lived normal control, and are highly resistant to a variety of stresses including oxidative and electrophilic challenges. Traits associated with age-1 mutation are widely believed to be mediated through AKT-1, which requires PIP3 for both tethering and activation. Active AKT complex phosphorylates and thereby inactivates the DAF-16/FOXO transcription factor. However, extensive evidence indicates that pleiotropic effects of age-1- null mutations, including extreme longevity, cannot be explained by insulin likereceptor/ AKT/FOXO signaling alone, suggesting involvement of other PIP3-binding proteins. We used ligand-affinity capture to identify membrane-bound proteins downstream of PI3KI that preferentially bind PIP3. Computer modeling supports a subset of candidate proteins predicted to directly bind PIP3 in preference to PIP2, and functional testing by RNAi knockdown confirmed candidates that partially mediate the stress-survival, aggregation-reducing and longevity benefits of PI3KI disruption. PIP3-specific candidate sets are highly enriched for proteins previously reported to affect translation, stress responses, lifespan, proteostasis, and lipid transport.


Alagpulinsa D.A.,ellan Veterans Medical Center | Alagpulinsa D.A.,University of Arkansas for Medical Sciences | Yaccoby S.,University of Arkansas for Medical Sciences | Ayyadevara S.,ellan Veterans Medical Center | And 3 more authors.
Cancer Biology and Therapy | Year: 2015

RAD51-mediated recombinational repair is elevated in multiple myeloma (MM) and predicts poor prognosis. RAD51 has been targeted to selectively sensitize and/or kill tumor cells. Here, we employed a peptide nucleic acid (PNA) to inhibit RAD51 expression in MM cells. We constructed a PNA complementary to a unique segment of the RAD51 gene promoter, spanning the transcription start site, and conjugated it to a nuclear localization signal (PKKKRKV) to enhance cellular uptake and nuclear delivery without transfection reagents. This synthetic construct, (PNArad51_nls), significantly reduced RAD51 transcripts in MM cells, and markedly reduced the number and intensity of de novo and melphalan-induced nuclear RAD51 foci, while increasing the level of melphalan-induced γH2AX foci. Melphalan alone markedly induced the expression of 5 other genes involved in homologous-recombination repair, yet suppression of RAD51 by PNArad51_nls was sufficient to synergize with melphalan, producing significant synthetic lethality of MM cells in vitro. In a SCID-rab mouse model mimicking the MM bone marrow microenvironment, treatment with PNArad51_nls ± melphalan significantly suppressed tumor growth after 2 weeks, whereas melphalan plus control PNArad4µ_nls was ineffectual. This study highlights the importance of RAD51 in myeloma growth and is the first to demonstrate that anti-RAD51 PNA can potentiate conventional MM chemotherapy. © 2015 Taylor & Francis Group, LLC.


Alagpulinsa D.A.,ellan Veterans Medical Center | Alagpulinsa D.A.,University of Arkansas for Medical Sciences | Ayyadevara S.,ellan Veterans Medical Center | Ayyadevara S.,University of Arkansas for Medical Sciences | And 2 more authors.
Frontiers in Oncology | Year: 2014

We previously reported high expression of RAD51 and increased homologous recombination (HR) rates in multiple myeloma (MM) cells, and showed that genomic instability and disease progression are commensurate with HR levels. Moreover, high RAD51 expression in vivo is associated with chemoresistance and poor patient survival. Doxorubicin (DOX) is one of the most widely used drug treatments in MM chemotherapy. DOX is cytotoxic because it induces DNA double-strand breaks, which can be repaired by RAD51-mediated HR; activation of this pathway thus contributes to resistance. To investigate the role of RAD51 in MM drug resistance, we assessed the ability of B02, a small-molecule inhibitor of RAD51, to enhance DOX sensitivity of MM cells. Combining low-toxicity doses of DOX and B02 resulted in significant synthetic lethality, observed as increased apoptosis and reduced viability compared to either agent alone, or to the product of their individual effects. In contrast, the combination did not produce significant synergy against normal human CD19+ B cells from peripheral blood. DOX induced RAD51 at both mRNA and protein levels, while arresting cells in S and G2. DOX treatment also increased the number of RAD51 foci, a marker of HR repair, so that the fraction of cells with ≥5 foci rose 4-fold, whereas γH2AX foci rose far less, implying that most new breaks are repaired. When B02 treatment preceded DOX exposure, the induction of RAD51 foci was severely blunted, whereas γH2AX foci rose significantly relative to basal levels or either agent alone. In MM cells carrying a chromosomally integrated reporter of HR repair, DOX increased HR events while B02 inhibition of RAD51 blocked the HR response. These studies demonstrate the crucial role of RAD51 in protecting MM cells from genotoxic agents such as DOX, and suggest that specific inhibition of RAD51 may be an effective means to block DNA repair in MM cells and thus to enhance the efficacy of chemotherapy. © 2014 Alagpulinsa, Ayyadevara and Shmookler-reis.


Alagpulinsa D.A.,ellan Veterans Medical Center | Alagpulinsa D.A.,University of Arkansas for Medical Sciences | Ayyadevara S.,ellan Veterans Medical Center | Ayyadevara S.,University of Arkansas for Medical Sciences | And 3 more authors.
Molecular Cancer Therapeutics | Year: 2016

PARP1/2 are required for single-strand break repair, and their inhibition causes DNA replication fork collapse and doublestrand break (DSB) formation. These DSBs are primarily repaired via homologous recombination (HR), a high-fidelity repair pathway. Should HR be deficient, DSBs may be repaired via error-prone nonhomologous end-joining mechanisms, or may persist, ultimately resulting in cell death. The combined disruption of PARP and HR activities thus produces synthetic lethality. Multiple myeloma cells are characterized by chromosomal instability and pervasive DNA damage, implicating aberrant DNA repair. Cyclin-dependent kinases (CDK), upstream modulators of HR, are dysregulated in multiple myeloma. Here, we show that a CDK inhibitor, dinaciclib, impairs HR repair and sensitizes multiple myeloma cells to the PARP1/2 inhibitor ABT-888. Dinaciclib abolishes ABT-888-induced BRCA1 and RAD51 foci and potentiates DNA damage, indicated by increased γH2AX foci. Dinaciclib treatment reduces expression of HR repair genes, including Rad51, and blocks BRCA1 phosphorylation, a modification required for HR repair, thus inhibiting HR repair of chromosome DSBs. Cotreatment with dinaciclib and ABT-888 in vitro resulted in synthetic lethality of multiple myeloma cells, but not normal CD19+ B cells, and slowed growth of multiple myeloma xenografts in SCID mice almost two-fold. These findings support combining dinaciclib with PARP inhibitors for multiple myeloma therapy. © 2015 American Association for Cancer Research.


Ayyadevara S.,ellan Veterans Medical Center | Ayyadevara S.,University of Arkansas for Medical Sciences | Balasubramaniam M.,University of Arkansas for Medical Sciences | Parcon P.A.,University of Arkansas for Medical Sciences | And 12 more authors.
Aging Cell | Year: 2016

Neurodegenerative diseases are distinguished by characteristic protein aggregates initiated by disease-specific ‘seed’ proteins; however, roles of other co-aggregated proteins remain largely unexplored. Compact hippocampal aggregates were purified from Alzheimer's and control-subject pools using magnetic-bead immunoaffinity pulldowns. Their components were fractionated by electrophoretic mobility and analyzed by high-resolution proteomics. Although total detergent-insoluble aggregates from Alzheimer's and controls had similar protein content, within the fractions isolated by tau or Aβ1–42 pulldown, the protein constituents of Alzheimer-derived aggregates were more abundant, diverse, and post-translationally modified than those from controls. Tau- and Aβ-containing aggregates were distinguished by multiple components, and yet shared >90% of their protein constituents, implying similar accretion mechanisms. Alzheimer-specific protein enrichment in tau-containing aggregates was corroborated for individuals by three analyses. Five proteins inferred to co-aggregate with tau were confirmed by precise in situ methods, including proximity ligation amplification that requires co-localization within 40 nm. Nematode orthologs of 21 proteins, which showed Alzheimer-specific enrichment in tau-containing aggregates, were assessed for aggregation-promoting roles in C. elegans by RNA-interference ‘knockdown’. Fifteen knockdowns (71%) rescued paralysis of worms expressing muscle Aβ, and 12 (57%) rescued chemotaxis disrupted by neuronal Aβ expression. Proteins identified in compact human aggregates, bound by antibody to total tau, were thus shown to play causal roles in aggregation based on nematode models triggered by Aβ1–42. These observations imply shared mechanisms driving both types of aggregation, and/or aggregate-mediated cross-talk between tau and Aβ. Knowledge of protein components that promote protein accrual in diverse aggregate types implicates common mechanisms and identifies novel targets for drug intervention. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.


PubMed | ellan Veterans Medical Center
Type: Journal Article | Journal: The journals of gerontology. Series A, Biological sciences and medical sciences | Year: 2012

Two nonsense mutants of age-1, the Caenorhabditis elegans gene encoding phosphoinositide 3-kinase, live nearly 10-fold longer than wild-type controls and are exceptionally resistant to several stresses. Genome-wide expression analyses implicated downregulation of many more genes than were upregulated in second-generation age-1 homozygotes. Functional-annotation analysis, based on Gene Ontology terms, suggested that novel mechanisms may mediate the stronger phenotypes observed for these worms than with milder age-1 disruption. For the current study, the same microarray data were reanalyzed using novel meta-analytic procedures that we developed recently. First, gene p values were corrected for systematic biases based on the observed distribution for nonexpressed genes; these values were then combined to derive an aggregate p value for each functional-annotation term while adjusting for intergene covariance. This resulted in much better coverage of relevant gene categories, including many that were independently supported by other data. The number of nonredundant GO categories significantly distinguishing age-1 alleles of exceptional longevity increased from sevenfold to greater than ninefold, improving both sensitivity and specificity of selection for altered pathways and implicating previously unsuspected longevity mechanisms. Of 150 genes whose differential expression underlay significant GO terms in both comparisons, over half were up- or down-regulated in accord with longevity, whereas one third showed altered expression uniquely in the longest-lived age-1-null strains, consistent with the activation or suppression of pathways peculiar to strong age-1 mutants.


PubMed | ellan Veterans Medical Center and University of Arkansas for Medical Sciences
Type: Journal Article | Journal: Oncotarget | Year: 2016

Class-I phosphatidylinositol 3-kinase (PI3KI) converts phosphatidylinositol 4,5-bisphosphate (PIP2) to phosphatidylinositol 3,4,5-triphosphate (PIP3). PIP3 comprises two fatty-acid chains that embed in lipid-bilayer membranes, joined by glycerol to inositol triphosphate. Proteins with domains that specifically bind that head-group (e.g. pleckstrin-homology [PH] domains) are thus tethered to the inner plasma-membrane surface where they have an enhanced likelihood of interaction with other PIP3-bound proteins, in particular other components of their signaling pathways. Null alleles of the C. elegans age-1 gene, encoding the catalytic subunit of PI3KI, lack any detectable class-I PI3K activity and so cannot form PIP3. These mutant worms survive almost 10-fold longer than the longest-lived normal control, and are highly resistant to a variety of stresses including oxidative and electrophilic challenges. Traits associated with age-1 mutation are widely believed to be mediated through AKT-1, which requires PIP3 for both tethering and activation. Active AKT complex phosphorylates and thereby inactivates the DAF-16/FOXO transcription factor. However, extensive evidence indicates that pleiotropic effects of age-1-null mutations, including extreme longevity, cannot be explained by insulin like-receptor/AKT/FOXO signaling alone, suggesting involvement of other PIP3-binding proteins. We used ligand-affinity capture to identify membrane-bound proteins downstream of PI3KI that preferentially bind PIP3. Computer modeling supports a subset of candidate proteins predicted to directly bind PIP3 in preference to PIP2, and functional testing by RNAi knockdown confirmed candidates that partially mediate the stress-survival, aggregation-reducing and longevity benefits of PI3KI disruption. PIP3-specific candidate sets are highly enriched for proteins previously reported to affect translation, stress responses, lifespan, proteostasis, and lipid transport.

Loading ellan Veterans Medical Center collaborators
Loading ellan Veterans Medical Center collaborators