Time filter

Source Type

Zippel D.B.,The Surgical Center | Zippel D.B.,Ella Institute of Melanoma Research | Besser M.,Sheba Cancer Research Center | Besser M.,Ella Institute of Melanoma Research | And 12 more authors.
Experimental and Therapeutic Medicine | Year: 2012

Tumor-infiltrating lymphocytes (TILs) are produced by resecting tumor tissue and growing and expanding ex vivo large quantities of autologous T cells. Once the TILs are ready for infusion, the patient undergoes a non-myeloablative lympho-depleting course of chemotherapy and subsequent TIL infusion with high-dose bolus IL-2. This study reviews the surgical experience of the TIL program at the Chaim Sheba Cancer Research Center in Israel. Eligible patients underwent surgical consultation to determine what tumorectomy would be beneficial for harvesting appropriate tissue. Factors involved in the decision included tumor mass size, location and morbidity of the procedure. Between January 2006 and May 2010, 44 patients underwent 47 procedures of adoptive transfer of TILs. Three patients underwent the procedure twice for recurrence after initial good responses, including an additional surgical procedure to produce fresh tumor. Thirty-seven excisions were with general anesthesia and 10 were with local anesthesia. Of the 37 general anesthesia procedures, 27 were open procedures involving a thoracotomy, a laparotomy or dissection of a major lymph node basin. Ten used minimally invasive techniques such as thorascopy or laparoscopy. Tumorectomy sites included 18 lymph node metastasis, 13 subcutaneous nodules, 11 lung specimens and 5 abdominal visceral metastasis including 2 liver lesions. Surgical mortality and major morbidity was 0%. Minor morbidity included only wound complications. Maximal number of TILs were derived from lymph node specimens, while liver metastasis procured the fewest TILs. Adoptive cell transfer technology affords a maximal tumor response with minimal surgical morbidity in metastatic patients.

Cohen R.,Ella Institute of Melanoma Research | Cohen R.,Tel Aviv University | Greenberg E.,Ella Institute of Melanoma Research | Greenberg E.,Tel Aviv University | And 6 more authors.
Oncotarget | Year: 2015

Melanoma is an aggressive malignancy with a high metastatic potential. microRNA-17 (miR-17) is a member of the oncogenic miR-17/92 cluster. Here we study the effect of miR-17 on melanoma cell motility. Over expression of the mature or pri-microRNA form of miR-17 in WM-266-4 and 624mel melanoma lines enhances cell motility, evident in both wound healing and transwell migration assays. TargetScan algorithm predicts the PEA3-subfamily member ETV1 as a direct target of miR-17. Indeed, a 3-4 -fold decrease of ETV1 protein levels are observed following miR-17 transfection into the various melanoma lines, with no significant change in ETV1 mRNA expression. Dual luciferase experiments demonstrate direct binding of miR-17 to the 3'-untranslated region of ETV1, confirmed by abolishing point mutations in the putative binding site. These combined results suggest regulation of ETV1 by miR-17 by a direct translational repression. Further, in both melanoma cell lines ETV1 knockdown by selective siRNA successfully pheno-copies the facilitated cell migration, while overexpression of ETV1 inhibits cell motility and migration. Altered ETV1 expression does not affect melanoma net-proliferation. In conclusion, we show a new role for miR-17 in melanoma, facilitating cell motility, by targeting the translation of ETV1 protein, which may support the development of metastasis.

Loading Ella Institute of Melanoma Research collaborators
Loading Ella Institute of Melanoma Research collaborators