Luxembourg, Luxembourg
Luxembourg, Luxembourg

Element Six is a member of the De Beers Group of Companies, its majority shareholder. Element Six designs, develops and produces synthetic diamond supermaterials, and operates worldwide with its head office registered in Luxembourg, and primary manufacturing facilities in China, Germany, Ireland, Sweden, South Africa, U.S. and the U.K. Element Six is organized into two primary commercial divisions – Abrasives and Technologies. Element Six advanced engineering materials are used in abrasive applications such as cutting, grinding, drilling, shearing and polishing, while the extreme properties of synthetic diamond beyond hardness are applied in a wide array of industrial and technology applications such as optics, power transmission, water treatment, semi-conductors, sensors and quantum information processing. Wikipedia.


Time filter

Source Type

Patent
Element Six | Date: 2017-04-05

A thermal spray assembly (10) for transforming precursor material (60) into a layer of deposited material joined to a substrate body. A plasma torch (20) produces a plasma jet from a plasma nozzle (28). A feeder mechanism (30) guides the precursor material (60) into the plasma jet in use and provides a feeder orifice (70) when in an open condition. The feeder mechanism comprises a guide chamber (34) and a moveable guide mechanism (32), and the guide chamber is capable of guiding the precursor material to the feeder orifice, through which the precursor material can move from the guide chamber and enter the plasma jet at a variable mean distance from the plasma nozzle (28) in response to movement of the guide mechanism (32).


A sensor (1, 2, 3, 4, 5, 6, 7, 8) comprising a first diamond substrate (9) with at least one colour centre (15), the sensor (1, 2, 3, 4, 5, 6, 7, 8) further comprising a first piezomagnetic (10) or piezoelectric primary element (11), which primary element (10, 11) is arranged to interact with the colour centre(s) (15) of the first diamond substrate (9).


A composite material and a method of using the composite material. The composite material consists of at least 65 volume per cent cubic boron nitride (cBN) grains (10) dispersed in a binder matrix, the binder matrix comprising a plurality of microstructures (12) bonded to the cBN grains (10) and a plurality of intermediate regions (14) between the cBN grains (10); the microstructures (12) comprising nitride or boron compound of a metal; and the intermediate regions (14) including a silicide phase containing the metal chemically bonded with silicon; in which the content of the silicide phase is 2 to 6 weight per cent of the composite material, and in which the cBN grains (10) have a mean size of 0.2 to 20m. Silicon nitride can further be contained (16). The metal can preferably be Ti, Hf, Ta or Zr.


A free standing PCD body comprises a PCD material formed of combination of intergrown diamond grains forming a diamond network and an interpenetrating metallic network, the PCD body not being attached to a second body or substrate formed of a different material. The diamond network is formed of diamond grains having a plurality of grain sizes, and comprises a grain size distribution having an average diamond grain size, wherein the largest component of the diamond grain size distribution is no greater than three times the average diamond grain size. The PCD material forming the free standing PCD body is homogeneous, such that the PCD body is spatially constant and invariant with respect to diamond network to metallic network volume ratio. The homogeneity is measured at a scale greater than ten times the average grain size and spans the dimension of the PCD body. The PCD material is also macroscopically residual stress free at said scale.


A microwave plasma reactor for manufacturing synthetic diamond material via chemical vapour deposition, the microwave plasma reactor comprising: a plasma chamber defining a resonant cavity for supporting a primary microwave resonance mode having a primary microwave resonance mode frequency f; a plurality of microwave sources coupled to the plasma chamber for generating and feeding microwaves having a total microwave power into the plasma chamber; a gas flow system for feeding process gases into the plasma chamber and removing them therefrom; and a substrate holder disposed in the plasma chamber and comprising a supporting surface for supporting a substrate on which the synthetic diamond material is to be deposited in use, wherein the plurality of microwave sources are configured to couple at least 30% of the total microwave power into the plasma chamber in the primary microwave resonance mode frequency f, and wherein at least some of the plurality of microwave sources are solid state microwave sources.


Patent
Baker Hughes Inc. and Element Six | Date: 2017-03-06

An earth-boring drilling tool comprises a cutting element. The cutting element comprises a substrate, a diamond table, and at least one sensing element formed from a doped diamond material disposed at least partially within the diamond table. A method for determining an at-bit measurement for an earth-boring drill bit comprises receiving an electrical signal generated within a doped diamond material disposed within a diamond table of a cutting element of the earth-boring drill bit, and correlating the electrical signal with at least one parameter during a drilling operation.


Patent
Element Six | Date: 2017-02-27

A tool component comprising a wear part covered at least in part by a connection member, the wear part having a specified hardness and the connection member being a metal or alloy, and the wear part comprising a surface that includes one or more depressions or projections therefrom, and the connection member having been pressed against that surface so that at least the surface of the connection member that faces the wear part surface follows the profile of the wear part, whereby relative movement between the wear part and connection member is substantially prevented. The metal or alloy connection member may be readily attached to a tool body for example by brazing of the like. The wear part may comprise a material that is not readily brazeable, for example a ceramic material or a cermet or a superhard material or a composite of such materials.


Patent
Element Six | Date: 2017-03-10

A superhard structure comprises a body of polycrystalline superhard material comprising a first region and a second region, the second region being adjacent an exposed surface of the superhard structure, the second region comprising a diamond material or cubic boron nitride, the density of the second region being greater than 3.4103 kilograms per cubic metre when the second region comprises diamond material. The material(s) forming the first and second regions have a difference in coefficient of thermal expansion, the first and second regions being arranged such that this difference induces compression in the second region adjacent the exposed surface. The first/a further region has the highest coefficient of thermal expansion of the polycrystalline body and is separated from a peripheral free surface of the body of polycrystalline superhard material by the second region or one or more further regions formed of a material or materials of a lower coefficient of thermal expansion. The regions comprise a plurality of grains of polycrystalline superhard material. There is also disclosed a method of making such a material.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: ICT-27-2015 | Award Amount: 4.44M | Year: 2016

Driven by the end-users requirements and needs, the main objective of the HIPERDIAS project is to demonstrate high throughput laser-based manufacturing using high-power, high-repetition rate sub-1ps laser. Although the laser system to be developed within HIPERDIAS can address other material processing applications, the focus here will be 3D structuring of silicon at high-speed, precision processing of diamond material and fine cutting of metal for the watch and the medical industry. Chirped Pulse Amplification (CPA) approach based on highly efficient compressors gratings will be implemented in order to minimize the overall losses of the laser system. The final targets of the project are to demonstrate:- a 10-times increase of ablation rate and productivity of large area 3D-structuring of silicon - a 10 times increase of speed in fine cutting metals - an increase of process speed (6-10 times) at a low processing tools cost of diamond machining Therefore, the laser parameters, as well as the beam shaping, beam guiding (based on Kagom fibers) and machine systems will be developed and optimized to fulfill the above manufacturing targets. The laser architecture will be based on fully passive amplifier stages combining hybrid (fiber-bulk) amplifier and thin-disk multipass amplifiers to achieve sub-500fs at an average output power of 500W and sub-1ps at an average output of 1kW, at a repetition rate of 1-2 MHz. Furthermore, second harmonic generation (SHG, 515 nm) and third harmonic generation (THG, 343 nm) will be implemented to allow processing investigation at these wavelengths. At 515 nm (respectively 343 nm) an average power of >=250W (respectively>=100W) shall be demonstrated.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: SC5-12b-2015 | Award Amount: 5.00M | Year: 2016

Flintstone2020 aims to provide a perspective for the replacement of two important CRMs tungsten (W) and cobalt (Co) which are the main constituents for two important classes of hard materials (cemented carbides/WC-Co, and PCD/diamond-Co), by developing innovative alternative solutions for tooling operating under extreme conditions. Fundamental knowledge on mechanical properties and wear of different tools, gained in machining tests and dedicated experiments from WP1 is passed onto the respective WPs. WP2 will experiment on small samples with 3-9 mm for testing the fundamental behavior of new B-X phases and particularly as a feedback for binder matrix improvement. In WP3 samples (12 mm ) will be investigated from individual HPHT runs for characterization and testing to guide high pressure sintering process optimization. The HPHT process and the samples produced are then upscaled to the industrial mass production level in WP4. In WP5, demonstrator cutting tools from full size HPHT synthesis test runs will be prepared via laser cutting and consecutive macro- and microshaping of tool geometry within WP5. In WP6 aspects of environmental benefits in the total life cycle of the superhard materials will be investigated, including health and safety aspects. WP7 will focus on exploitation and dissemination.

Loading Element Six collaborators
Loading Element Six collaborators