Luxembourg, Luxembourg
Luxembourg, Luxembourg

Element Six is a member of the De Beers Group of Companies, its majority shareholder. Element Six designs, develops and produces synthetic diamond supermaterials, and operates worldwide with its head office registered in Luxembourg, and primary manufacturing facilities in China, Germany, Ireland, Sweden, South Africa, U.S. and the U.K. Element Six is organized into two primary commercial divisions – Abrasives and Technologies. Element Six advanced engineering materials are used in abrasive applications such as cutting, grinding, drilling, shearing and polishing, while the extreme properties of synthetic diamond beyond hardness are applied in a wide array of industrial and technology applications such as optics, power transmission, water treatment, semi-conductors, sensors and quantum information processing. Wikipedia.


Time filter

Source Type

Patent
Element Six | Date: 2015-05-22

A thermal spray assembly (10) for transforming precursor material (60) into a layer of deposited material joined to a substrate body. A plasma torch produces a plasma jet from a plasma nozzle (28) and a feeder mechanism (30) guides the precursor material into the plasma jet in use and is capable of providing a feeder orifice when in an open condition. The feeder mechanism (30) is provided with a distribution chamber configured for guiding moving precursor material azimuthally around the plasma torch, a plurality of deflector structures (38) configured for deflecting the precursor material (60) from the distribution chamber and guiding it into a guide chamber configured for guiding the precursor material (60) to the plasma jet in use.


Patent
Element Six | Date: 2016-06-09

A superhard polycrystalline construction comprises a body of polycrystalline superhard material formed of a mass of superhard grains exhibiting inter-granular bonding and defining a plurality of interstitial regions therebetween, the superhard grains having an associated mean free path; and a non-superhard phase at least partially filling a plurality of the interstitial regions and having an associated mean free path. The average grain size of the superhard grains is less than or equal to 25 microns; and the ratio of the standard deviation in the mean free path associated with the non-superhard phase to the mean of the mean free path associated with the non-superhard phase is greater than or equal to 80% when measured using image analysis techniques at a magnification of 1000. There is also disclosed a method of forming such a superhard polycrystalline construction.


Patent
Element Six | Date: 2016-10-20

A method of producing a large area plate of single crystal diamond from CVD diamond grown on a substrate substantially free of surface defects by chemical vapour deposition (CVD). The homoepitaxial CVD grown diamond and the substrate are severed transverse to the surface of the substrate on which diamond growth took place to produce the large area plate of single crystal CVD diamond.


A microwave plasma reactor for manufacturing synthetic diamond material via chemical vapour deposition, the microwave plasma reactor comprising: a plasma chamber defining a resonant cavity for supporting a primary microwave resonance mode having a primary microwave resonance mode frequency f; a plurality of microwave sources coupled to the plasma chamber for generating and feeding microwaves having a total microwave power into the plasma chamber; a gas flow system for feeding process gases into the plasma chamber and removing them therefrom; and a substrate holder disposed in the plasma chamber and comprising a supporting surface for supporting a substrate on which the synthetic diamond material is to be deposited in use, wherein the plurality of microwave sources are configured to couple at least 30% of the total microwave power into the plasma chamber in the primary microwave resonance mode frequency f, and wherein at least some of the plurality of microwave sources are solid state microwave sources.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: ICT-27-2015 | Award Amount: 4.44M | Year: 2016

Driven by the end-users requirements and needs, the main objective of the HIPERDIAS project is to demonstrate high throughput laser-based manufacturing using high-power, high-repetition rate sub-1ps laser. Although the laser system to be developed within HIPERDIAS can address other material processing applications, the focus here will be 3D structuring of silicon at high-speed, precision processing of diamond material and fine cutting of metal for the watch and the medical industry. Chirped Pulse Amplification (CPA) approach based on highly efficient compressors gratings will be implemented in order to minimize the overall losses of the laser system. The final targets of the project are to demonstrate:- a 10-times increase of ablation rate and productivity of large area 3D-structuring of silicon - a 10 times increase of speed in fine cutting metals - an increase of process speed (6-10 times) at a low processing tools cost of diamond machining Therefore, the laser parameters, as well as the beam shaping, beam guiding (based on Kagom fibers) and machine systems will be developed and optimized to fulfill the above manufacturing targets. The laser architecture will be based on fully passive amplifier stages combining hybrid (fiber-bulk) amplifier and thin-disk multipass amplifiers to achieve sub-500fs at an average output power of 500W and sub-1ps at an average output of 1kW, at a repetition rate of 1-2 MHz. Furthermore, second harmonic generation (SHG, 515 nm) and third harmonic generation (THG, 343 nm) will be implemented to allow processing investigation at these wavelengths. At 515 nm (respectively 343 nm) an average power of >=250W (respectively>=100W) shall be demonstrated.


Grant
Agency: GTR | Branch: EPSRC | Program: | Phase: Training Grant | Award Amount: 3.99M | Year: 2014

The Scottish Doctoral Training Centre in Condensed Matter Physics, known as the CM-DTC, is an EPSRC-funded Centre for Doctoral Training (CDT) addressing the broad field of Condensed Matter Physics (CMP). CMP is a core discipline that underpins many other areas of science, and is one of the Priority Areas for this CDT call. Renewal funding for the CM-DTC will allow five more annual cohorts of PhD students to be recruited, trained and released onto the market. They will be highly educated professionals with a knowledge of the field, in depth and in breadth, that will equip them for future leadership in a variety of academic and industrial careers. Condensed Matter Physics research impacts on many other fields of science including engineering, biophysics, photonics, chemistry, and materials science. It is a significant engine for innovation and drives new technologies. Recent examples include the use of liquid crystals for displays including flat-screen and 3D television, and the use of solid-state or polymeric LEDs for power-saving high-illumination lighting systems. Future examples may involve harnessing the potential of graphene (the worlds thinnest and strongest sheet-like material), or the creation of exotic low-temperature materials whose properties may enable the design of radically new types of (quantum) computer with which to solve some of the hardest problems of mathematics. The UKs continued ability to deliver transformative technologies of this character requires highly trained CMP researchers such as those the Centre will produce. The proposed training approach is built on a strong framework of taught lecture courses, with core components and a wide choice of electives. This spans the first two years so that PhD research begins alongside the coursework from the outset. It is complemented by hands-on training in areas such as computer-intensive physics and instrument building (including workshop skills and 3D printing). Some lecture courses are delivered in residential schools but most are videoconferenced live, using the well-established infrastructure of SUPA (the Scottish Universities Physics Alliance). Students meet face to face frequently, often for more than one day, at cohort-building events that emphasise teamwork in science, outreach, transferable skills and careers training. National demand for our graduates is demonstrated by the large number of companies and organisations who have chosen to be formally affiliated with our CDT as Industrial Associates. The range of sectors spanned by these Associates is notable. Some, such as e2v and Oxford Instruments, are scientific consultancies and manufacturers of scientific equipment, whom one would expect to be among our core stakeholders. Less obviously, the list also represents scientific publishers, software houses, companies small and large from the energy sector, large multinationals such as Solvay-Rhodia and Siemens, and finance and patent law firms. This demonstrates a key attraction of our graduates: their high levels of core skills, and a hands-on approach to problem solving. These impart a discipline-hopping ability which more focussed training for specific sectors can complement, but not replace. This breadth is prized by employers in a fast-changing environment where years of vocational training can sometimes be undermined very rapidly by unexpected innovation in an apparently unrelated sector. As the UK builds its technological future by funding new CDTs across a range of priority areas, it is vital to include some that focus on core discipline skills, specifically Condensed Matter Physics, rather than the interdisciplinary or semi-vocational training that features in many other CDTs. As well as complementing those important activities today, our highly trained PhD graduates will be equipped to lay the foundations for the research fields (and perhaps some of the industrial sectors) of tomorrow.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: SC5-12b-2015 | Award Amount: 5.00M | Year: 2016

Flintstone2020 aims to provide a perspective for the replacement of two important CRMs tungsten (W) and cobalt (Co) which are the main constituents for two important classes of hard materials (cemented carbides/WC-Co, and PCD/diamond-Co), by developing innovative alternative solutions for tooling operating under extreme conditions. Fundamental knowledge on mechanical properties and wear of different tools, gained in machining tests and dedicated experiments from WP1 is passed onto the respective WPs. WP2 will experiment on small samples with 3-9 mm for testing the fundamental behavior of new B-X phases and particularly as a feedback for binder matrix improvement. In WP3 samples (12 mm ) will be investigated from individual HPHT runs for characterization and testing to guide high pressure sintering process optimization. The HPHT process and the samples produced are then upscaled to the industrial mass production level in WP4. In WP5, demonstrator cutting tools from full size HPHT synthesis test runs will be prepared via laser cutting and consecutive macro- and microshaping of tool geometry within WP5. In WP6 aspects of environmental benefits in the total life cycle of the superhard materials will be investigated, including health and safety aspects. WP7 will focus on exploitation and dissemination.


Grant
Agency: GTR | Branch: Innovate UK | Program: | Phase: Feasibility Study | Award Amount: 187.22K | Year: 2016

Quantum technologies use quantum physics to gain performance which is otherwise unattainable. The quantum world challenges our preconceptions, here objects can exist in two places at once. This world typically occurs on the atomic level at low temperatures which has meant that quantum technologies are difficult to realise. Research shows that the quantum state of electrons trapped in an atom sized defect in diamond can be manipulated by shining light on the diamond and read by measuring emitted light, even at room temperature. These ‘quantum defects‘ can be used for a range of applications such as nanoscale magnetic field measurement which may revolutionise biomedicine, or to build a quantum computer which is able solve problems no current computer can. Realisation of these technologies requires quantum defects very close to the surface in structured surfaces. This project aims produce quantum ready diamond materials, with these quantum defects retaining their exceptional properties within a few nanometres of the surface, for the manufacture of devices structured on the nanoscale to optimise collection of the light carrying the quantum information.


The invention relates to a PCD composite compact element comprising a PCD structure integrally bonded at an interface to a cemented carbide substrate; the PCD structure comprising coherently bonded diamond grains having a mean size no greater than 15 microns; the cemented carbide substrate comprising carbide particles dispersed in a metallic binder, the carbide particles comprising a carbide compound of a metal; wherein the ratio of the amount of metallic binder to the amount of the metal at points in the substrate deviates from a mean value by at most 20 percent of the mean value. The invention further relates to a method for making a PDC compact element comprising a PCD structure integrally bonded to a substrate formed of cemented carbide; the method including introducing a source of excess carbon to the substrate at a bonding surface of the substrate to form a carburised substrate; contacting an aggregated mass of diamond grains with the carburised substrate; and sintering the diamond grains in the presence of a solvent/catalyst material for diamond; wherein the mean size of the diamond grains in the aggregated mass is no greater than 30 microns.


Patent
Element Six and Baker Hughes Inc. | Date: 2016-02-24

An embodiment of a PCD insert comprises an embodiment of a PCD element joined to a cemented carbide substrate at an interface. The PCD element has internal diamond surfaces defining interstices between them. The PCD element comprises a masked or passivated region and an unmasked or unpassivated region, the unmasked or unpassivated region defining a boundary with the substrate, the boundary being the interface. At least some of the internal diamond surfaces of the masked or passivated region contact a mask or passivation medium, and some or all of the interstices of the masked or passivated region and of the unmasked or unpassivated region are at least partially filled with an infiltrant material.

Loading Element Six collaborators
Loading Element Six collaborators