Entity

Time filter

Source Type

Luxembourg, Luxembourg

Element Six is a member of the De Beers Group of Companies, its majority shareholder. Element Six designs, develops and produces synthetic diamond supermaterials, and operates worldwide with its head office registered in Luxembourg, and primary manufacturing facilities in China, Germany, Ireland, Sweden, South Africa, U.S. and the U.K. Element Six is organized into two primary commercial divisions – Abrasives and Technologies. Element Six advanced engineering materials are used in abrasive applications such as cutting, grinding, drilling, shearing and polishing, while the extreme properties of synthetic diamond beyond hardness are applied in a wide array of industrial and technology applications such as optics, power transmission, water treatment, semi-conductors, sensors and quantum information processing. Wikipedia.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: ICT-27-2015 | Award Amount: 4.44M | Year: 2016

Driven by the end-users requirements and needs, the main objective of the HIPERDIAS project is to demonstrate high throughput laser-based manufacturing using high-power, high-repetition rate sub-1ps laser. Although the laser system to be developed within HIPERDIAS can address other material processing applications, the focus here will be 3D structuring of silicon at high-speed, precision processing of diamond material and fine cutting of metal for the watch and the medical industry. Chirped Pulse Amplification (CPA) approach based on highly efficient compressors gratings will be implemented in order to minimize the overall losses of the laser system. The final targets of the project are to demonstrate: - a 10-times increase of ablation rate and productivity of large area 3D-structuring of silicon - a 10 times increase of speed in fine cutting metals - an increase of process speed (6-10 times) at a low processing tools cost of diamond machining Therefore, the laser parameters, as well as the beam shaping, beam guiding (based on Kagom fibers) and machine systems will be developed and optimized to fulfill the above manufacturing targets. The laser architecture will be based on fully passive amplifier stages combining hybrid (fiber-bulk) amplifier and thin-disk multipass amplifiers to achieve sub-500fs at an average output power of 500W and sub-1ps at an average output of 1kW, at a repetition rate of 1-2 MHz. Furthermore, second harmonic generation (SHG, 515 nm) and third harmonic generation (THG, 343 nm) will be implemented to allow processing investigation at these wavelengths. At 515 nm (respectively 343 nm) an average power of >=250W (respectively >=100W) shall be demonstrated.


Patent
Baker Hughes Inc. and Element Six | Date: 2015-11-02

A method of forming a cutting element for an earth-boring tool. The method includes providing diamond particles on a supporting substrate, the volume of diamond particles comprising a plurality of diamond nanoparticles. A catalyst-containing layer is provided on exposed surfaces of the volume of diamond nanoparticles and the supporting substrate. The diamond particles are processed under high temperature and high pressure conditions to form a sintered nanoparticle-enhanced polycrystalline compact. A cutting element and an earth-boring tool including a cutting element are also disclosed.


Patent
Element Six | Date: 2015-09-02

Cemented carbide material comprising tungsten carbide (WC) material in particulate form having a mean grain size D in terms of equivalent circle diameter of at least 0.5 microns and at most 10 microns, and a binder phase comprising cobalt (Co) of at least 5 weight per cent and at most 12 weight per cent, W being present in the binder at a content of at least 10 weight per cent of the binder material; the content of the WC material being at least 75 weight per cent and at most 95 weight per cent; and nanoparticles dispersed in the binder material, the nanoparticles comprising material according to the formula CoxWyCz, where X is a value in the range from 1 to 7, Y is a value in the range from 1 to 10 and Z is a value in the range from 0 to 4; the nanoparticles having a mean particle size at most 10 nm, at least 10 per cent of the nanoparticles having size of at most 5 nm; the cemented carbide material having a magnetic coercive force in the units kA/m of at least 2.1D+14.


Patent
Baker Hughes Inc. and Element Six | Date: 2015-11-24

An earth-boring drilling tool comprises a cutting element. The cutting element comprises a substrate, a diamond table, and at least one sensing element formed from a doped diamond material disposed at least partially within the diamond table. A method for determining an at-bit measurement for an earth-boring drill bit comprises receiving an electrical signal generated within a doped diamond material disposed within a diamond table of a cutting element of the earth-boring drill bit, and correlating the electrical signal with at least one parameter during a drilling operation.


Grant
Agency: Cordis | Branch: FP7 | Program: CP | Phase: ICT-2013.9.7 | Award Amount: 8.27M | Year: 2013

The DIADEMS project aims at exploiting the unique physical properties of NV color centres in ultrapure single-crystal CVD-grown diamond to develop innovative devices with unprecedented performances for ICT applications. By exploiting the atom-like structure of the NV that exhibits spin dependent optical transitions, DIADEMS will make optics-based magnetometry possible.\nThe objectives of DIADEMS are to develop\n- Wide field magnetic imagers with 1 nT sensivities,\n- Scanning probe magnetometer with sensitivity 10 nT and spatial resolution 10 nm,\n- Sensor heads with resolution 1 pT.\n\nTo reach such performances, DIADEMS will:\n- Use new theoretical protocols for sensing,\n- Develop ultrahigh purity diamond material with controlled single nitrogen implantation with a precision better than 5 nm,\n- Process scanning probe tips with diametre in the 20 nm range,\n- Transfer them to AFM cantilever, improve the emission properties of NV by coupling them with photonic cavities and photonic waveguides.\n\nDIADEMS outputs will demonstrate new ICT functionalities that will boost applications with high impact on society:\n- Calibration and optimization of write/read magnetic heads for future high capacity (3 Tbit per square inch) storage disk required for intense computing,\n- Imaging of electron-spin in graphene and carbon nanotubes for next generation of electronic components based on spintronics,\n- Non-invasive investigation of living neuronal networks to understand brain function,\n- Demonstration of magnetic resonance imaging of single spins allowing single protein imaging for medical research.\n\nDIADEMS aims at integrating the efforts of the European Community on NV centres to push further the limits of this promising technology and to keep Europes prominent position.

Discover hidden collaborations