Entity

Time filter

Source Type

Luxembourg, Luxembourg

Element Six is a member of the De Beers Group of Companies, its majority shareholder. Element Six designs, develops and produces synthetic diamond supermaterials, and operates worldwide with its head office registered in Luxembourg, and primary manufacturing facilities in China, Germany, Ireland, Sweden, South Africa, U.S. and the U.K. Element Six is organized into two primary commercial divisions – Abrasives and Technologies. Element Six advanced engineering materials are used in abrasive applications such as cutting, grinding, drilling, shearing and polishing, while the extreme properties of synthetic diamond beyond hardness are applied in a wide array of industrial and technology applications such as optics, power transmission, water treatment, semi-conductors, sensors and quantum information processing. Wikipedia.


Cutting elements, earth-boring drill bits having such cutting elements and related methods are described herein. In some embodiments, a cutting element for an earth-boring tool may include a diamond table having an indentation in a cutting face thereof and a shaped feature in a substrate at the interface between the diamond table and the substrate, the shaped feature corresponding to the indentation in the cutting face of the diamond table. In further embodiments, a cutting element for an earth-boring tool may include a sacrificial structure positioned within an indentation in a diamond table. In additional embodiments, a method of forming a cutting element may include positioning a sacrificial structure in a mold, positioning a powdered precursor material over the sacrificial structure, and pressing and sintering the powdered precursor material to form a diamond table having an indentation in a cutting face formed by the sacrificial structure.


The present disclosure relates to substrates for use in microwave plasma reactors. Certain substrates include a cylindrical disc of a carbide forming refractory metal having a flat growth surface on which CVD diamond is to be grown and a flat supporting surface opposed to said growth surface. The cylindrical disc may have a diameter of 80 mm or more. The growth surface may have a flatness variation no more than 100 mm The supporting surface may have a flatness variation no more than 100 mm.


Patent
Baker Hughes Inc. and Element Six | Date: 2015-11-02

A method of forming a cutting element for an earth-boring tool. The method includes providing diamond particles on a supporting substrate, the volume of diamond particles comprising a plurality of diamond nanoparticles. A catalyst-containing layer is provided on exposed surfaces of the volume of diamond nanoparticles and the supporting substrate. The diamond particles are processed under high temperature and high pressure conditions to form a sintered nanoparticle-enhanced polycrystalline compact. A cutting element and an earth-boring tool including a cutting element are also disclosed.


Patent
Element Six | Date: 2015-09-02

Cemented carbide material comprising tungsten carbide (WC) material in particulate form having a mean grain size D in terms of equivalent circle diameter of at least 0.5 microns and at most 10 microns, and a binder phase comprising cobalt (Co) of at least 5 weight per cent and at most 12 weight per cent, W being present in the binder at a content of at least 10 weight per cent of the binder material; the content of the WC material being at least 75 weight per cent and at most 95 weight per cent; and nanoparticles dispersed in the binder material, the nanoparticles comprising material according to the formula CoxWyCz, where X is a value in the range from 1 to 7, Y is a value in the range from 1 to 10 and Z is a value in the range from 0 to 4; the nanoparticles having a mean particle size at most 10 nm, at least 10 per cent of the nanoparticles having size of at most 5 nm; the cemented carbide material having a magnetic coercive force in the units kA/m of at least 2.1D+14.


Methods for integrating wide-gap semiconductors, and specifically, gallium nitride epilayers with synthetic diamond substrates are disclosed. Diamond substrates are created by depositing synthetic diamond onto a nucleating layer deposited or formed on a layered structure that comprises at least one layer made out of gallium nitride. Methods for manufacturing GaN-on-diamond wafers with low bow and high crystalline quality are disclosed along with preferred choices for manufacturing GaN-on-diamond wafers and chips tailored to specific applications.

Discover hidden collaborations