Foster City, CA, United States
Foster City, CA, United States

Electronics for Imaging, Inc. is an international company based in Silicon Valley that specializes in printing technology. In 2014, EFI won a record-setting 11 Must See 'Em awards through Graph Expo, the most ever awarded to any one company. In October 2014, it made headlines when it was discovered to have violated California and United States labor laws. Wikipedia.


Time filter

Source Type

Patent
Electronics for Imaging | Date: 2016-03-21

Techniques described herein automatically discover the IP address of a first network device such as but not limited to a multifunction printer. Such techniques use a unique identifier of the first network device, such as for example a multifunction printer serial number. Such unique number is used in the configuration of a second network device, such as for example a Digital Front End/External Print Controller that may need the IP address of the first network device. The unique number may be entered once into the second network device or may be received from the first network device through a data interface by the second network device. Techniques then may use any available broadcast technology such as but not limited to Simple Network Management Protocol (SNMP) to determine from available network devices which network device therefrom has the same unique number, thereby obtaining the IP address of the first network device.


Patent
Electronics for Imaging | Date: 2016-12-23

Systems and methods of applying a gaseous inhibitor into a printing region to hinder the curing process of ink on the print heads caused by the presence of stray light in the printing environment.


Patent
Electronics for Imaging | Date: 2015-10-19

A radiation-curable ink composition for application to glass, ceramic, or metal by an inkjet printer. The ink composition can be applied to a glass, ceramic, or metal substrate to decorate, protect, etc. the substrate. In some embodiments, the ink composition includes a glass frits component, a chromophore component, and a UV-curable component. The glass frits component facilitates the fusing of the ink component with a glass, ceramic, or metal substrate to which the ink composition is applied. The chromophore component is the primary colorant of the ink composition. The UV-curable component facilitates activation of polymerization upon exposure to ultra-violet (UV) radiation, which causes the ink composition to cure and fix/pin to the underlying substrate. After the ink composition is applied to a substrate and cured by exposure to UV radiation, the substrate is heated to a temperature that causes the ink composition to fuse with the substrate.


Patent
Electronics for Imaging | Date: 2016-05-09

In a color printing environment, functions for printing color management are dissociated. An abstraction layer is also provided to facilitate setting and evaluation of all factors relating to color print and prediction.


Patent
Electronics for Imaging | Date: 2017-04-12

Color prediction for color printing is performed in response to loading media into a printer and initiation of a calibration sequence, using one or more sensors to measure physical properties of the media. Based at least upon the measured physical properties, an optimal preset is identified in a database and the optimal preset is loaded into the printer as a starting calibration. A difference from values in the optimal preset loaded into the printer and those of the measured physical properties is determined and the printer prints a chart. The sensors measure the chart and the measurements of the chart are used to fine tune the optimal preset. The fine tuned preset is then saved as a new media profile.


Patent
Electronics for Imaging | Date: 2017-04-19

Compensation algorithms are applied to hide failed nozzles or, at least, reduce the objectionable effect of such nozzles in a printed image. Once a failed nozzle or under-performing nozzle is detected in a single-pass printing system, it is shut-off and the image data that was intended to be printed by this nozzle is redistributed to its neighboring nozzles. Embodiments of the invention use of a 1-D look-up table and stochastically distribute the duty cycle to each neighboring nozzle. In this way, failed nozzles are effectively hidden in the final print.


Patent
Electronics for Imaging | Date: 2016-02-29

Embodiments of the invention take advantage of the change in gloss caused by overprinting a printed image with clear ink. Embodiments of the invention thus implement gloss control functionality in a printer without the requirements of a pin and cure or other known systems.


Patent
Electronics for Imaging | Date: 2016-06-13

Embodiments of the invention combine pigmented and soluble salt digital ink technologies by dispersing water-soluble metal salts as particles in a non-aqueous inkjet ink fluid. The metal salts are dispersed as pigment-like particles, and not as a dissolved solute.


Patent
Electronics for Imaging | Date: 2016-04-04

White-balance is improved when printing on colored media, while minimizing the time and use of costly materials required by present approaches. In an embodiment, the typical solid white fill or background layer is altered by including in the white layer one or more of the other colors already available in the printer to shade this layer. Thus, a small amount of cyan, for example, helps balance a pink-ish (red) media; yellow is used for blue media; and magenta is used for green media; as well as combinations thereof. A combination of transparent process inks and opaque white helps to maintain brightness (luminosity).


Patent
Electronics for Imaging | Date: 2016-04-04

Ink jet printing on a non-absorbent substrate involves a wet primer having a primer viscosity. The wet primer is applied on the non-absorbent substrate. An ink jet ink having an ink jet viscosity lower than the primer viscosity is jetted over the wet primer while the primer is still wet. The wet primer and ink are simultaneously cured on the substrate.

Loading Electronics for Imaging collaborators
Loading Electronics for Imaging collaborators