Anderson, United States
Anderson, United States

Time filter

Source Type

News Article | April 17, 2017
Site: www.eurekalert.org

Professor Federico Rosei, Director of the INRS Centre Énergie Matériaux Télécommunications, is the recipient of the 2017 Outstanding Engineer Award from IEEE (Institute of Electrical and Electronics Engineers) Canada. The award recognizes outstanding Canadian engineers who have made important contributions to electrical and electronics engineering. This is not the first time Dr. Rosei's remarkable contributions to engineering in Canada have been highlighted. His election as a fellow of the Engineering Institute of Canada in 2013 and of the Canadian Academy of Engineering in 2015 attest to his status among Canada's engineering elite. Dr. Rosei holds the UNESCO Chair in Materials and Technologies for Energy Conversion, Saving and Storage (MATECSS) and the newly established Canada Research Chair in Nanostructured Materials. His ever-growing national and international reputation is reflected in the numerous awards and honours he has received in recent years from around the world. Dr. Rosei will receive a medal and plaque at the IEEE Canada awards ceremony, part of the Annual IEEE Canadian Conference on Electrical and Computer Engineering next May 1, 2017, in Windsor, Ontario. The theme of the conference is "Two Great Nations Innovate the Technology." Our heartfelt congratulations to Professor Rosei on this new honour!


News Article | February 24, 2017
Site: www.prweb.com

Daisy Intelligence Corporation, an artificial intelligence software-as-a-service platform, announced today that they will be offering a total of $30,000 in scholarship support for students in the Engineering Science program at the University of Toronto’s Faculty of Applied Science & Engineering. The new Daisy Intelligence Scholarships in Engineering Science will be awarded each year to three students completing their fourth year of study in each of the program’s Electrical and Computer Engineering, Robotics, and Mathematics, Statistics & Finance majors. Three scholarships will be awarded each year based on academic achievement and each recipient will receive a $2,000 Daisy Scholarship. The Engineering Science program at the University of Toronto is one of the most distinguished engineering programs in the world and attracts top students who are looking for an academic challenge. This enriched program is widely regarded as an innovator in engineering education and provides students with excellent preparation in a wide range of engineering, science and mathematical fields. Historically, about half of the program’s graduates pursue post-graduate studies at top graduate schools around the world. “As a U of T Engineering Science alumnus, I wanted to recognize student achievement in one of the best engineering programs in the world. This program is critical to keeping Canada on the leading edge of artificial intelligence and critical to maintaining Canada’s global competitiveness. I am so happy we can do our part in recognizing these high academic achievers in this important program.” said Gary Saarenvirta, CEO of Daisy Intelligence. “This is our first year awarding the Daisy Intelligence Scholarships in Engineering Science and we intend to continue this to help the university recruit and retain the best and brightest students.” Saarenvirta received his undergraduate degree in 1988 and holds both his B.A.Sc. and M.A.Sc. degrees in Aerospace Engineering from the University of Toronto. His M.A.Sc. was in Computational Fluid Dynamics at the University of Toronto’s Institute for Aerospace Studies. The Daisy Intelligence Scholarships in Engineering Science recipients are those who attained academic excellence in their fourth year of study. Christina Heidorn External Relations Officer, Division of Engineering Science Faculty of Applied Science and Engineering, University of Toronto engsci(at)ecf.utoronto.ca 416.978.8634


News Article | February 23, 2017
Site: www.businesswire.com

SYDNEY--(BUSINESS WIRE)--Marketlend, Australia’s leading peer-to-peer trade credit platform, today announced that it has appointed Brad Pattelli as a non-executive member of its board of directors. Pattelli brings decades of experience as an investor in a broad range of businesses, multiple prior public and private board roles, and significant expertise in the P2P arena as the former President of LC Advisors, a subsidiary of LendingClub, the award-winning online platform. Leo Tyndall, CEO of Marketlend said, “Marketlend is delighted to have someone of Pattelli’s caliber join our board of directors with other notable directors being Jon Barlow. It’s a real affirmation of the Company’s achievements to date and our future prospects to have him make a significant and integral investment in our nearly complete equity funding round.” Prior to joining LendingClub, Pattelli was a partner at Angelo, Gordon & Co., a $26 billion New York registered investment advisor specializing in alternative investments. As the co-portfolio manager of the leveraged loan group, Pattelli managed CDO portfolios and multiple non-investment grade portfolios while leading significant growth in assets under management and delivering solid returns to clients. Pattelli, a Chartered Financial Analyst, holds a Bachelor's of Science in Electrical and Computer Engineering from the University of Notre Dame and received an MBA from Columbia Business School, where he was most notably trained by Jim Rogers, Chairman of Rogers Holdings. Pattelli commented, “The Marketlend team has really delivered an innovative financing solution for the small to medium sized business market and at the same time has creatively structured unique products that deliver benefits to both borrowers and investors. I look forward to working with this talented team to help make Marketlend the go-to provider of receivables and supply chain financing, as well as a credible choice in alternative, insured fixed income investing.” Founded in 2014, Marketlend provides investors with a unique opportunity to invest in supply chain or debtor lending facilities secured by short-term receivables, primarily from small to medium sized Australian businesses. An A+ rated global insurance company protects Marketlend investors against insolvency of the borrower and its debtors, enabling uninterrupted principal repayment on the majority of Marketlend’s lending facilities, providing investors with significant credit enhancement whilst enabling borrowers to receive better interest rates. Marketlend has recently secured a mandate from an undisclosed institutional investor to invest on its platform. Leo Tyndall, CEO and Founder of Marketlend, said; “We are very excited by the appointments, as well as the extensive knowledge, investment and skills of our team that make Marketlend a scalable marketplace lending operation to the Australian businesses. Our model is based on providing three key strengths: an innovative technology solution for the financing of company receivables and payables locally and offshore; accompanying the investments with risk protection enhancements consisting of insurance and first loss protection; and securitizing the loans on inception to meet the needs of investors including institutional investors.” The first of its kind in Australia, and possibly globally, Marketlend is an online marketplace that facilitates prompt, secured lending by using securitization from inception in a secure environment for trade credit receivables. Focusing on marketplace lending in Australia (also known as peer-to-peer lending), Marketlend enables a direct link between businesses and investors. As a stable online platform, Marketlend provides the peace of mind that comes with loss protection on each loan and insurance in most circumstances with the benefit of a quick, effortless process. Marketlend stands apart from its competitors by securitizing from inception each loan, and delivering an investment that is accompanied by individualized loan risk protection enhancements. The use of insurance, and securitization from inception enables Marketlend to be able to offer its investments to the full spectrum of investors from retail to significant institutional investors in a format that is well accepted by all.


News Article | March 1, 2017
Site: www.cemag.us

Researchers at Tufts University's School of Engineering have developed a new bioinspired technique that transforms silk protein into complex materials that are easily programmable at the nano-, micro-, and macro-scales as well as ultralight and robust. Among the varied structures generated was a web of silk nanofibers able to withstand a load 4,000 times its own weight. The research is published online in Nature Nanotechnology. Structural proteins are nature’s building blocks, forming materials that provide stiffness, structure, and function in biological systems. A major obstacle to fabricating comparable synthetic materials is natural materials' hierarchical structure which confers unique properties from the molecular to the macro level. When scientists try to emulate this structure, they often find that control at one scale hinders control at other scales. The Tufts researchers combined bottom-up self-assembly characteristic of natural materials with directed, top-down assembly to simultaneously control geometry at all scales, micro-mechanical constraints, and solvent-removal dynamics — all of which determine biomaterial properties. "We generated controllable, multi-scale materials that could be readily engineered with dopant agents. While silk is our main focus, we believe this approach is applicable to other biomaterials and composites and synthetic hydrogels," says corresponding author Fiorenzo Omenetto, Ph.D., Frank C. Doble Professor in the Department of Biomedical Engineering.  Omenetto also has an appointment in the Department of Electrical and Computer Engineering and in the Department of Physics within the School of Arts and Sciences. With the new technique, centimeter-scale silicone molds were patterned with micro-scale features no thicker than a human hair. An aqueous fibroin protein gel derived from silkworm cocoons was injected into the molds and then mechanically stressed by contraction of the gel in the presence of water and ethanol and/or physical deformation of the entire mold.  As the system dried, the silk protein's structure naturally transformed to a more robust beta-sheet crystal. The material's final shape and mechanical properties were precisely engineered by controlling the micro-scale mold pattern, gel contraction, mold deformation and silk dehydration. "The final result of our process is a stable architecture of aligned nanofibers, similar to natural silk but offering us the opportunity to engineer functionality into the material," says first author Peter Tseng, Ph.D., postdoctoral scholar in Omenetto's Silk Lab at Tufts' School of Engineering. In some of the experiments the Tufts researchers doped the silk gel with gold nanoparticles which were able to transport heat when exposed to light. Tseng notes that webs spun by spiders are structurally dense rather than porous. "In contrast, our web structure is aerated, porous and ultra-light while also robust to human touch, which may enable every-day applications in the future," he says. A 2 to 3 cm diameter web weighing approximately 2.5 mg was able to support an 11-gram weight. Other paper authors were Bradley Napier, Tufts doctoral student in the Silk Lab; Siwei Zhao, Ph.D., post-doctoral associate in the Silk Lab;  Alexander N. Mitropoulos, Ph.D., former Tufts doctoral student in biomedical engineering, now at the United States Military Academy at West Point; Matthew B. Applegate, Ph.D., former Tufts doctoral student in biomedical engineering, now at Boston University; Benedetto Marelli, Ph.D., former post-doctoral associate in the  Silk Lab, now at MIT; and David L. Kaplan, Ph.D., Stern Family Professor of Engineering. Kaplan holds additional Tufts faculty appointments in the Department of Chemical and Biological Engineering, the Department of Chemistry in the School of Arts and Sciences, the School of Medicine and the School of Dental Medicine. Support for this research came in part from the Office of Naval Research under award N000141310596. Peter Tseng received support from the National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health under the Kirschstein National Research Service Awards fellowship number F32EB021159-02. The authors also acknowledge support from the Air Force Office of Scientific Research.


News Article | February 15, 2017
Site: www.spie.org

The FireFly architecture features free-space optics communication links and represents an extreme design approach to meet the requirements of modern robust data center networks. Data centers (DCs)—facilities that are used to centralize the IT operations and equipment of an organization—represent a critical piece of modern networked applications, in both the private and public sectors. The trend toward DCs has been driven by a number of key factors, e.g., economies of scale, reduced management costs, better use of hardware (via statistical multiplexing), and the ability to elastically scale applications in response to changing workload patterns. In particular, a robust network fabric is fundamental for the success of DCs, i.e., to ensure that the network does not become a bottleneck for high-performance applications. In this context, the design of a DC network must satisfy several goals, including high performance (e.g., high throughput and low latency), low equipment and management costs, robustness to dynamic traffic patterns, incremental expandability to add new servers or racks, as well as other practical concerns (e.g., cabling complexity, and power and cooling costs). Currently available DC network architectures, however, do not provide satisfactory solutions to these requirements. There are two main problems with traditional static (wired) networks. They are either ‘overprovisioned’ to account for worst-case traffic patterns and thus incur high costs (e.g., with fat trees or Clos architectures), or they are ‘oversubscribed’ (such as with simple trees or leaf-spine architectures). Although the latter networks have low costs, they offer poor performance because of their congested links. In recent studies, attempts have been made to overcome these limitations by augmenting a static ‘core’ with some flexible links (radio-frequency or optical wireless). These augmented architectures do show some promise, but they provide only a small improvement in performance. Moreover, all these architectures involve high cabling costs and complexities. In our work,1 we envision an extreme design point to meet the requirements of modern DC networks rather than trying to incrementally improve the cost-performance tradeoffs, high cabling complexity, and rigidity of current DC architectures. In our architecture vision—known as FireFly—we use free-space optics (FSO) communication links to realize a fully flexible, all-wireless inter-rack fabric. FSO communication technology is particularly well suited to our aim because it offers very high data rates (tens of Gb/s) over longranges (more than 100m), while having low transmission power and a small interference footprint. A conceptual overview of our FireFly architecture vision is shown in Figure 1. In our design, each top-of-rack (ToR) switch has flexible (steerable) FSO links that can be dynamically reconfigured to connect to other ToRs. The controller reconfigures the topology to adapt to current traffic workloads. This vision provides several benefits over current DC architectures. For instance, our topological flexibility (if achieved correctly) provides a low-cost option (i.e., few switches and links) with performance comparable to more expensive overprovisioned networks. In addition, our all-wireless fabric eliminates cabling complexity and associated overheads (e.g., obstructed cooling). Our approach can also facilitate new and radical DC topology structures that would otherwise remain at the ‘paper design’ phase because of their cabling complexity. Lastly, our method of flexibly turning links on or off brings us closer to realizing the aim of energy-proportional DCs (and the flexibility enables easier incremental expansion of a DC). Figure 1. Schematic illustration of the FireFly architecture. FSO: Free-space optics. ToR: Top of rack. The unique characteristics of our approach (i.e., the FSO-based inter-rack links and the fully flexible topology) give rise to novel algorithmic, networking, and system-level challenges that need to be addressed before our vision can be made into a reality. First, we need to develop cost-effective and robust link technologies that have small form factors and that can be steered at short timescales to impart flexibility. Second, we require algorithmic techniques to design the efficient and flexible networks. Third, we need new network management solutions. These may include algorithms for the joint optimization problem of runtime topology selection and traffic engineering, as well as data-plane mechanisms to guarantee various consistency and performance requirements. In our recent work,1 we have demonstrated the viability of our FireFly architecture by building a proof-of-concept prototype (with commodity components) for a steerable, small-form-factor FSO device (see Figure 2). We have also developed practical heuristics to address the algorithmic and system-level challenges in the network design and management of our architecture. In addition, we have developed techniques to provide line-of-sight for FSO links in the FireFly architecture. For our steerable, small-form-factor FSO device, we have been exploring the use of microelectromechanical systems (MEMS) mirrors as a steering technology to steer the FSO beams with minimal latency. In this device, we use a collimated laser beam that is transmitted from the fiber collimator of an FSO terminal. The laser beam passes onto a gimbal-less two-axis MEMS micromirror (2mm diameter) and thus steers the beam in an ultrafast manner within a large optical deflection (10°) over the entire device bandwidth (1.2kHz). The MEMS mirror deflects the beam into a wide-angle lens that magnifies (about three times) the optical scan angles of the system. This magnification is linear and therefore results in an overall scan capability field of view of more than 30°. The power consumption of this system is less than 1mW and thus several orders of magnitude lower than that of galvanometer mirrors. The outgoing FSO beam from our MEMS beam-steering mechanism passes through autopoints and onto a receiving aperture (where it is efficiently coupled into a fiber collimator). With this fast and precise MEMS steering mechanism, we can switch the FSO from one rack to the next for reconfigurable networking. It also enables an autocorrection mechanism for fixing any misalignments (in real time). Figure 2. Photographs of the MEMS (microelectromechanical systems)-based proof-of-concept prototype assembly used to realize steerable FSO beams. In summary, we have designed the novel FireFly architecture for radically improving modern DC networks. Our vision includes unique characteristics, such as FSO-based inter-rack links and a fully flexible topology. Such features give rise to a number of algorithmic, networking, and system-level challenges that we are working to address. We have recently demonstrated the feasibility of our architecture with a proof-of-concept prototype for a MEMS-based steerable, small-form-factor FSO device. There are, however, various challenges that we need to address before we can realize commercialization of our architecture. In our current work we are thus building a small testbed for the FireFly architecture, which includes autoalignment through the use of galvanometers and MEMS steering technologies. We now plan to demonstrate the resilience of our FSO-link technologies against indoor effects, e.g., rack vibrations and temperature variations. This project was supported by the National Science Foundation award 1513866 (NeTS: Medium: Collaborative Research: Flexible All-Wireless Inter-Rack Fabric for Datacenters using Free-Space Optics) and represents a collaboration between faculty members, postdoctoral fellows, research associates, and graduate students at Pennsylvania State University, Stony Brook University, and Carnegie Mellon University. Electrical Engineering and Computer Science Pennsylvania State University Mohsen Kavehrad has been the W. L. Weiss Chair Professor of Electrical Engineering since 1997, and is the founding director of the Center for Information and Communications Technology Research. He has previously worked for Bell Laboratories and is a fellow of the IEEE. He is the author of more than 400 papers, several books and book chapters, and holds several patents. Department of Computer Science Stony Brook University Samir Das received his PhD in computer science from Georgia Institute of Technology. He previously studied at Jadavpur University, India, and the Indian Institute of Science. He has also worked briefly at the Indian Statistical Institute. He moved to Stony Brook in 2002 and was previously a faculty member at the University of Texas at San Antonio and then at the University of Cincinnati. Himanshu Gupta obtained his PhD in computer science from Stanford University in 1999 and his BTech from the Indian Institute of Technology in 1992. In his recent research he focuses on theoretical issues associated with wireless networking. In particular, he is interested in sensor networks and databases. His other research interests include database systems and theory, e.g., materialized views, (multiple) query optimization, and data analysis. Jon Longtin joined the mechanical engineering faculty in 1996. He is the author of more than 130 technical research publications, including a number of book chapters. He also holds six issued and three pending US patents. His expertise is in the thermal sciences, with a focus on the development of laser-based optical techniques for the measurement of temperature, concentration, and thermal properties. He is also interested in the use of ultrafast lasers for precision material processing and micromachining, and the development of sensors for harsh environments (e.g., direct-write thermal spray technology). He has been the recipient of a Japan Society for the Promotion of Science postdoctoral fellowship, the National Science Foundation's Faculty Early Career Development award and the Presidential Early Career Award for Scientists and Engineers, and the Stony Brook Excellence in Teaching award. He is a registered professional engineer in New York State. School of Computer Science Carnegie Mellon University Vyas Sekar is an assistant professor in the Electrical and Computer Engineering department. He received his PhD from Carnegie Mellon University in 2010 and earned his bachelor's degree from the Indian Institute of Technology Madras (during which he was awarded the President of India Gold Medal). His research interests lie at the intersection of networking, security, and systems. He has also received a number of best paper awards, e.g., at the Association for Computing Machinery's SIGCOMM, CoNext, and Multimedia conferences.


News Article | February 15, 2017
Site: www.prweb.com

David C. Munson Jr. has been named Rochester Institute of Technology’s 10th president. The RIT Board of Trustees made the decision at a special session, selecting the former dean of the University of Michigan College of Engineering from a pool of national candidates. Munson will assume RIT’s top post July 1, succeeding Bill Destler, RIT’s president since 2007. Munson will be responsible for one of the nation’s leading research and career-oriented universities featuring 18,700 students from all 50 states and more than 100 foreign countries, 121,000 alumni, $73 million in sponsored research, and an endowment of more than $750 million. “It is a great honor and privilege to become the next president of what I believe to be a gem in higher education,” said Munson. “I was drawn to RIT when I observed an exciting portfolio of academic programs, research with impact to solve global problems, and an ability to stay focused on the overall student experience. I was truly impressed with RIT’s strengths in the arts, as well as technology, and how they are blended. I look forward to maintaining university traditions and simultaneously building on the 2025 Strategic Plan, ‘Greatness through Difference.’ I am eager to meet members of the RIT community and work with them to reach their aspirations.” A 24-member search committee composed of students, faculty, staff, alumni, administration and trustees narrowed the pool of candidates before the final selection by the Board of Trustees. “We are proud to welcome Dr. Munson to RIT and look forward to him leading the university through its next exciting chapter,” said Christine Whitman, chair of the RIT Board of Trustees. “His extensive academic experience, respected research credentials, demonstrated leadership, engagement with students and global vision will propel RIT to new heights. We know he will build on the strong foundation established by President Destler and his predecessors whose tireless work made RIT a distinctly great university.” Whitman added: “Dr. Munson has articulated a vision that is consistent with our strategic plan. He has the skills and experience to accomplish our goals and he sees opportunities to take us even further.” Munson has 38 years of experience in higher education, which includes serving as the Robert J. Vlasic Dean of Engineering at Michigan from 2006 to 2016, where he served two five-year terms, the maximum allowed by U-M. Michigan Engineering is considered one of the top engineering schools in the world. Eight of its academic departments are ranked in the nation’s top 10. Munson earned his BS degree in electrical engineering (with distinction) from the University of Delaware in 1975. He earned an MS and MA in electrical engineering from Princeton in 1977, followed by a Ph.D. in electrical engineering in 1979, also from Princeton. From 1979 to 2003, Munson was with the University of Illinois, where he was the Robert C. MacClinchie Distinguished Professor of Electrical and Computer Engineering, Research Professor in the Coordinated Science Laboratory, and a faculty member in the Beckman Institute for Advanced Science and Technology. In 2003, he became chair of the Department of Electrical Engineering and Computer Science at U-M prior to becoming dean. Today, with his deanship appointment fulfilled, he serves as a professor of electrical engineering and computer science. Munson’s teaching and research interests are in the area of signal and image processing. His current research is focused on radar imaging and computer tomography. He is co-founder of InstaRecon Inc., a start-up firm to commercialize fast algorithms for image formation in computer tomography. He is affiliated with the Infinity Project, where he is coauthor of a textbook on the digital world, which has been used in hundreds of high schools nationwide to introduce students to engineering. Munson is a Fellow of the Institute of Electrical and Electronics Engineers (IEEE), a past president of the IEEE Signal Processing Society, founding editor-in-chief of the IEEE Transactions on Image Processing, and co-founder of the IEEE International Conference on Image Processing. In addition to multiple teaching awards and other honors, he was presented the Society Award of the IEEE Signal Processing Society, he served as a Distinguished Lecturer of the IEEE Signal Processing Society, he received an IEEE Third Millennium Medal, and he was the Texas Instruments Distinguished Visiting Professor at Rice University. In 2016, Munson earned the Benjamin Garver Lamme Medal from the American Society of Engineering Education (highest award for an engineering administrator). It is this record of accomplishment that drew praise from current RIT President Bill Destler, who will retire June 30 after serving more than 40 years in higher education and 10 years as RIT president. He applauded the work of the search committee and the selection of the new president. “On behalf of RIT and the Greater Rochester-Finger Lakes region, I welcome Dr. Munson and his wife, Nancy, to our community,” said Destler. “The naming of a new president is an exciting time for RIT students, faculty and staff, as well as our alumni, family and friends around the world. Dr. Munson has an impressive record of accomplishments, and brings skills, expertise and experience that will greatly benefit this university, and further propel RIT as one of the great global universities.” To learn more about Munson’s credentials, including a curriculum vitae, go to: http://www.rit.edu/presidentialsearch/ To read more about the search process, go to http://www.rit.edu/news/story.php?id=59131. To read more about Munson, go to http://www.rit.edu/news/story.php?id=59171. Rochester Institute of Technology is home to leading creators, entrepreneurs, innovators and researchers. Founded in 1829, RIT enrolls about 19,000 students in more than 200 career-oriented and professional programs, making it among the largest private universities in the U.S. The university is internationally recognized and ranked for academic leadership in business, computing, engineering, imaging science, liberal arts, sustainability, and fine and applied arts. RIT also offers unparalleled support services for deaf and hard-of-hearing students. The cooperative education program is one of the oldest and largest in the nation. Global partnerships include campuses in China, Croatia, Dubai and Kosovo. For news, photos and videos, go to http://www.rit.edu/news.


The researchers recently demonstrated properties of their chiral metamaterial, in which they spectrally modified two absorptive resonances by incrementally exposing the material to power intensities beyond its linear optical regime. With a 15 milliwatt change in excitation power, they measured a 10-nanometer spectral shift in the material's transmission resonances and a 14-degree polarization rotation. The researchers believe that may be the strongest nonlinear optical rotation ever reported for a chiral metamaterial, and is about a hundred thousand times larger than the current record measurement for this type of structure. The research, supported by the National Science Foundation and the Air Force Research Laboratory, was reported February 27 in the journal Nature Communications. "Nanoscale chiral structures offer an approach to modulating optical signals with relatively small variations in input power," said Sean Rodrigues, a Ph.D. candidate who led the research in the laboratory of Associate Professor Wenshan Cai in Georgia Tech's School of Electrical and Computer Engineering. "To see this kind of change in such a thin material makes chiroptical metamaterials an interesting new platform for optical signal modulation." This modulation of chiroptical responses from metamaterials by manipulating input power offers the potential for new types of active optics such as all-optical switching and light modulation. The technologies could have applications in such areas as data processing, sensing and communications. Chiral materials exhibit optical properties that differ depending on their opposing circular polarizations. The differences between these responses, which are created by the nanoscale patterning of absorptive materials, can be utilized to create large chiroptical resonances. To be useful in applications such as all-optical switching, these resonances would need to be induced by external tuning - such as variations in power input. "When you increase the power, you shift the spectrum," Rodrigues said. "In effect, you change the transmission at certain wavelengths, meaning you're changing the amount of light passing through the sample by simply modifying input power." For optical engineers, that could be the basis for a switch. The material demonstrated by Cai's lab are made by nano-patterning layers of silver - approximately 33 nanometers thick - onto glass substrates. Between the carefully-designed silver layers is a 45-nanometer layer of dielectric material. An elliptical pattern is created using electron beam lithography, then the entire structure is encapsulated within a dielectric material to prevent oxidation. "It is the engineering of these structures that gives us these chiral optical properties," Rodrigues explained. "The goal is really to take advantage of the discrepancy between one circular polarization versus the other to create the broadband resonances we need." The material operates in the visible to near-infrared spectrum, at approximately 740 to 1,000 nanometers. The optical rotation and circular dichroism measurements were taken with the beam entering the material at a normal incident angle. The researchers induced the change in circular dichroism by increasing the optical power applied to the material from 0.5 milliwatts up to 15 milliwatts. While that is comparatively low power for a laser system, it has a high enough energy flux (energy transfer in time) to instigate change. "The beam size is roughly 40 microns, so it is really focused," said Rodrigues. "We are putting a lot of energy into a small area, which causes the effect to be fairly intense." The researchers don't yet know what prompts the change, but suspect that thermal processes may be involved in altering the material's properties to boost the circular dichroism. Tests show that the power applications do not damage the metamaterial. Cai's laboratory has been studying chiral materials of different kinds for a variety of optical applications. In June 2015, they reported the realization of one of the long-standing theoretical predictions in nonlinear optical metamaterials: creation of a nonlinear material that has opposite refractive indices at the fundamental and harmonic frequencies of light. Such a material, which doesn't exist naturally, had been predicted for nearly a decade. More information: Sean P. Rodrigues et al, Intensity-dependent modulation of optically active signals in a chiral metamaterial, Nature Communications (2017). DOI: 10.1038/ncomms14602


News Article | February 22, 2017
Site: www.eurekalert.org

BEER-SHEVA, Israel...Feb. 22, 2017 - Researchers at the Ben-Gurion University of the Negev (BGU) Cyber Security Research Center have demonstrated that data can be stolen from an isolated "air-gapped" computer's hard drive reading the pulses of light on the LED drive using various types of cameras and light sensors. In the new paper, the researchers demonstrated how data can be received by a Quadcopter drone flight, even outside a window with line-of-sight of the transmitting computer. Click here to watch a video of the demonstration. Air-gapped computers are isolated -- separated both logically and physically from public networks -- ostensibly so that they cannot be hacked over the Internet or within company networks. These computers typically contain an organization's most sensitive and confidential information. Led by Dr. Mordechai Guri, head of R&D at the Cyber Security Research Center, the research team utilized the hard-drive (HDD) activity LED lights that are found on most desktop PCs and laptops. The researchers found that once malware is on a computer, it can indirectly control the HDD LED, turning it on and off rapidly (thousands of flickers per second) -- a rate that exceeds the human visual perception capabilities. As a result, highly sensitive information can be encoded and leaked over the fast LED signals, which are received and recorded by remote cameras or light sensors. "Our method compared to other LED exfiltration is unique, because it is also covert," Dr. Guri says. "The hard drive LED flickers frequently, and therefore the user won't be suspicious about changes in its activity." Dr. Guri and the Cyber Security Research Center have conducted a number of studies to demonstrate how malware can infiltrate air-gapped computers and transmit data. Previously, they determined that computer speakers and fans, FM waves and heat are all methods that can be used to obtain data. In addition to Dr. Guri, the other BGU researchers include Boris Zadov, who received his M.Sc. degree from the BGU Department of Electrical and Computer Engineering and Prof. Yuval Elovici, director of the BGU Cyber Security Research Center. Prof. Elovici is also a member of Ben-Gurion University's Department of Software and Information Systems Engineering and director of Deutsche Telekom Laboratories at BGU. About American Associates, Ben-Gurion University of the Negev American Associates, Ben-Gurion University of the Negev (AABGU) plays a vital role in sustaining David Ben-Gurion's vision: creating a world-class institution of education and research in the Israeli desert, nurturing the Negev community and sharing the University's expertise locally and around the globe. As Ben-Gurion University of the Negev (BGU) looks ahead to turning 50 in 2020, AABGU imagines a future that goes beyond the walls of academia. It is a future where BGU invents a new world and inspires a vision for a stronger Israel and its next generation of leaders. Together with supporters, AABGU will help the University foster excellence in teaching, research and outreach to the communities of the Negev for the next 50 years and beyond. Visit vision.aabgu.org to learn more. AABGU, which is headquartered in Manhattan, has nine regional offices throughout the United States. For more information, visit http://www.


News Article | January 25, 2017
Site: www.techtimes.com

Nanotechnology - What You Should Know Graphene - Here's What You Should Know A new breakthrough has brightened the scope of expanding the utilization of the terahertz band of frequencies for faster and wider data transmission. Lying between infrared light and radio waves, terahertz band was facing under-utilization because of the nonavailability of compact, on-chip components such as transmitters, receivers, and modulators. The innovation from Tufts University School of Engineering in Massachusetts had researchers developing a modulator that is high-speed, chip-sized, and requires no DC power supply, The highlight is it exceeds 14 gigahertz and can work above 1 terahertz (THz) on the electromagnetic spectrum. This has opened up the scope for new generation wireless devices that can transmit terahertz frequencies with data transmission at unprecedented speeds compared to the present level. The fabrication of the on-chip device capable of gigahertz-rate amplitude modulation has reasons to excite the industry. The study has been published in Scientific Reports. "A prototype device is fabricated which shows THz intensity modulation of 96% at 0.25 THz carrier frequency with low insertion loss and device length as small as 100 microns. The demonstrated modulation cutoff frequency exceeds 14 GHz indicating the potential for the high-speed modulation of terahertz waves. The entire device operates at room temperature with low drive voltage (<2 V) and zero DC power consumption," the researchers said. Right now, most Wi-Fi and cellular networks are working with microwave frequencies of around one gigahertz. Moving to higher terahertz frequencies with high-speed data rates of 100 Gbit/s will be a big opportunity considering the rising bandwidth crunch. "This is a very promising device that can operate at terahertz frequencies, is miniaturized using mainstream semiconductor foundry, and is in the same form factor as current communication devices. It's only one building block, but it could help to start filling the THz gap," noted, Sameer Sonkusale, corresponding author from Nano Lab, Department of Electrical and Computer Engineering, Tufts University. The modulation cutoff frequency higher than 14 gigahertz and the potential to work above 1 THz will be a boon for cellular networks that are trying out the bands at the lower end of the spectrum and struggling with data transmission. During the experiments, the prototype device operated within the frequency band of 0.22-0.325 THz, in accordance with the experimental facilities available though it can work in other bands as well. The experiment has raised the bar of success rate when the past efforts to make terahertz modulators are factored in. In the past, engineers could push the limit only to a few kilohertz. The experiment remains a harbinger for faster yet compact terahertz modulators that can deliver high data rate wireless communication, given the high carrier frequency of THz waves that will support signal bandwidth compared to the radio frequency (RF) bands currently in use. The upcoming area of applications includes material identification, imaging, wireless communications, chemical and biological sensing. For better optimization of terahertz communications, researchers are now experimenting with other components such as bi-dimensional superlattice materials that can accelerate electron oscillations in the terahertz range and also for new power splitters with unique waveguide architectures to enable transmission of wireless terahertz waves through existing fiber optic networks. © 2017 Tech Times, All rights reserved. Do not reproduce without permission.


News Article | February 15, 2017
Site: www.techrepublic.com

A new form of ransomware, created by cybersecurity researchers at the Georgia Institute of Technology, was able to gain control of a simulated water treatment plant and threaten to shut off the water supply or poison it with increased amounts of chlorine. The ransomware, demonstrated at the 2017 RSA Conference in San Francisco, allowed researchers to access programmable logic controllers (PLCs), giving them the ability to shut valves, control the level of chlorine in the water, and display false readouts, a press release said. Given the increase in Internet of Things (IoT) and other connected systems in the industrial space, ransomware such as this could have dire consequences. The research is believed to be the first successful demonstration of ransomware controlling actual PLCs, according to the release. The goal of the work was to highlight weaknesses in the systems that control such critical aspects of day-to-day life, such as water treatment plants, HVAC systems, and building management. Ransomware is typically used to encrypt data like hospital records or business files until the victim agrees to pay a monetary ransom. However, researchers at Georgia Tech believe that these industrial systems could be next in line. "We are expecting ransomware to go one step farther, beyond the customer data to compromise the control systems themselves," David Formby, a Ph.D. student in the Georgia Tech School of Electrical and Computer Engineering, said in the release. "That could allow attackers to hold hostage critical systems such as water treatment plants and manufacturing facilities. Compromising the programmable logic controllers (PLCs) in these systems is a next logical step for these attackers." Raheem Beyah, associate chair in the School of Electrical and Computer Engineering, noted in the release that many real-world industrial systems don't have security in place to deal with ransomware, as they haven't been widely targeted by it yet and some of their vulnerabilities may not be fully understood. Many of the PLCs and control systems that were located by the researchers were accessible once they had access to the neighboring business systems. "Many control systems assume that once you have access to the network, that you are authorized to make changes to the control systems," Formby said in the release. "They may have very weak password policies and security policies that could let intruders take control of pumps, valves and other key components of the industrial control system." One of the core problems is that many operators make the assumption that their systems aren't connected to the internet, or that they are air-gapped, Formby said in the release. But, there are often connections for maintenance or other activities that may not be well understood. To perform their test of the ransomware, the university researchers combined some PLCs with pumps, tubes, and tanks to make a simulated water supply. Instead of chlorine, the release noted, they used iodine, and put starch in the water so it would turn blue if it came in contact with the iodine. "We were able to simulate a hacker who had gained access to this part of the system and is holding it hostage by threatening to dump large amounts of chlorine into the water unless the operator pays a ransom," Formby said in the release. "In the right amount, chlorine disinfects the water and makes it safe to drink. But too much chlorine can create a bad reaction that would make the water unsafe." Nation-state actors and militaries have been using offensive cyberweapons to attack industrial systems for years, with programs like Stuxnet being used to take down nuclear centrifuges in Iran. However, ransomware adds a financial element to these type of attacks, and the money could be motivation to push more attackers to target these kinds of systems. Operators should follow standard security practices of improving passwords and limiting their connections, the release said. Additionally, the researchers recommend installing intrusion monitoring systems as well.

Loading Electrical and Computer Engineering collaborators
Loading Electrical and Computer Engineering collaborators