Time filter

Source Type

La Paz, Bolivia

Scire A.,University of Arizona | Zandt G.,University of Arizona | Beck S.,University of Arizona | Long M.,Yale University | And 3 more authors.
Geophysical Journal International

Two arrays of broad-band seismic stations were deployed in the north central Andes between 8° and 21°S, the CAUGHT array over the normally subducting slab in northwestern Bolivia and southern Peru, and the PULSE array over the southern part of the Peruvian flat slab where the Nazca Ridge is subducting under South America. We apply finite frequency teleseismic P- and S-wave tomography to data from these arrays to investigate the subducting Nazca plate and the surrounding mantle in this region where the subduction angle changes from flat north of 14°S to normally dipping in the south. We present new constraints on the location and geometry of the Nazca slab under southern Peru and northwestern Bolivia from 95 to 660 km depth. Our tomographic images show that the Peruvian flat slab extends further inland than previously proposed along the projection of the Nazca Ridge. Once the slab re-steepens inboard of the flat slab region, the Nazca slab dips very steeply (~70°) from about 150 km depth to 410 km depth. Below this the slab thickens and deforms in the mantle transition zone.We tentatively propose a ridge-parallel slab tear along the north edge of the Nazca Ridge between 130 and 350 km depth based on the offset between the slab anomaly north of the ridge and the location of the re-steepened Nazca slab inboard of the flat slab region, although additional work is needed to confirm the existence of this feature. The subslab mantle directly below the inboard projection of the Nazca Ridge is characterized by a prominent low-velocity anomaly. South of the Peruvian flat slab, fast anomalies are imaged in an area confined to the Eastern Cordillera and bounded to the east by well-resolved low-velocity anomalies. These low-velocity anomalies at depths greater than 100 km suggest that thick mantle lithosphere associated with underthrusting of cratonic crust from the east is not present. In northwestern Bolivia a vertically elongated fast anomaly under the Subandean Zone is interpreted as a block of delaminating lithosphere. © The Authors 2015. Source

Ward K.M.,University of Arizona | Porter R.C.,Carnegie Institution of Washington | Zandt G.,University of Arizona | Beck S.L.,University of Arizona | And 3 more authors.
Geophysical Journal International

The Central Andes of southern Peru, Bolivia, Argentina and Chile (between 12°S and 42°S) comprise the largest orogenic plateau in the world associated with abundant arc volcanism, the Central Andean Plateau, as well as multiple segments of flat-slab subduction making this part of the Earth a unique place to study various aspects of active plate tectonics. The goal of this continental-scale ambient noise tomography study is to incorporate broad-band seismic data from 20 seismic networks deployed incrementally in the Central Andes from 1994 May to 2012 August, to image the vertically polarized shear wave velocity (Vsv) structure of the South American Cordillera. Using dispersion measurements calculated from the cross-correlation of 330 broad-band seismic stations, we construct Rayleigh wave phase velocity maps in the period range of 8-40 s and invert these for the shear wave velocity (Vsv) structure of the Andean crust. We provide a dispersion misfit map as well as uncertainty envelopes for our Vsv model and observe striking first-order correlations with our shallow results (~5 km) and the morphotectonic provinces as well as subtler geological features indicating our results are robust. Our results reveal for the first time the full extent of the mid-crustal Andean lowvelocity zone that we tentatively interpret as the signature of a very large volume Neogene batholith. This study demonstrates the efficacy of integrating seismic data from numerous regional broad-band seismic networks to approximate the high-resolution coverage previously only available though larger networks such as the EarthScope USArray Transportable Array in the United States. © The Authors 2013. Published by Oxford University Press on behalf of The Royal Astronomical Society. Source

Kumar A.,University of North Carolina at Chapel Hill | Wagner L.S.,Carnegie Institution for Science | Beck S.L.,University of Arizona | Long M.D.,Yale University | And 4 more authors.
Earth and Planetary Science Letters

We have determined the Wadati-Benioff Zone seismicity and state of stress of the subducting Nazca slab beneath central and southern Peru using data from three recently deployed local seismic networks. Our relocated hypocenters are consistent with a flat slab geometry that is shallowest near the Nazca Ridge, and changes from steep to normal without tearing to the south. These locations also indicate numerous abrupt along-strike changes in seismicity, most notably an absence of seismicity along the projected location of subducting Nazca Ridge. This stands in stark contrast to the very high seismicity observed along the Juan Fernandez ridge beneath central Chile where, a similar flat slab geometry is observed. We interpret this as indicative of an absence of water in the mantle beneath the overthickened crust of the Nazca Ridge. This may provide important new constraints on the conditions required to produce intermediate depth seismicity. Our focal mechanisms and stress tensor inversions indicate dominantly down-dip extension, consistent with slab pull, with minor variations that are likely due to the variable slab geometry and stress from adjacent regions. We observe significantly greater variability in the P-axis orientations and maximum compressive stress directions. The along strike change in the orientation of maximum compressive stress is likely related to slab bending and unbending south of the Nazca Ridge. © 2016 Elsevier B.V. Source

Discover hidden collaborations