EID Mediterranee

Montpellier, France

EID Mediterranee

Montpellier, France
SEARCH FILTERS
Time filter
Source Type

Cailly P.,French National Institute for Agricultural Research | Cailly P.,University of Nantes | Cailly P.,CIRAD - Agricultural Research for Development | Tran A.,CIRAD - Agricultural Research for Development | And 5 more authors.
Ecological Modelling | Year: 2012

As mosquitoes are vectors of major pathogens worldwide, the control of mosquito populations is one way to fight vector-borne diseases. The objectives of our study were to develop a tool to predict mosquito abundance over time, identify the main determinants of mosquito population dynamics, and assess mosquito control strategies. We developed a generic, mechanistic, climate-driven model of seasonal mosquito population dynamics that can be run over several years because it takes diapause into account. Both aquatic and adult stages are considered, resulting in 10 model compartments: eggs, larvae, and pupae for juveniles; emergent, nulliparous, and parous for adults, the latter two broken down into host-seeking, resting, and ovipositing adults. We then applied the model to Anopheles species of southern France, some of which (nulliparous adults) overwinter. We defined specific transition functions and parameter values for these species and this geographical area based on a literature review. Our model correctly predicted entomological field data. Control points in the model were related to mortality rates of adults, the sex-ratio at emergence, parameters related to development functions and the number of eggs laid by females. Lastly, we used our model to compare the efficiency of mosquito control strategies targeting larvae. We found that a larvicide spraying at regular time intervals acted as a preventive measure against mosquito emergence, and that such a strategy was more efficient than spraying only when the abundance of host-seeking females reached a given threshold. The proposed model can be applied easily to other mosquito species and geographic areas by adapting transition functions and parameter values. © 2011 Elsevier B.V.


Duvallet G.,CNRS Center of Evolutionary and Functional Ecology | De Gentile L.,University of Angers | Legros F.,CNR Institute of Neuroscience | Descloitres R.,CLCV | And 4 more authors.
Parasite | Year: 2011

Recent events with the first cases of local transmission of Chikungunya and dengue fever virus in southern France by Aedes albopictus, adding to the nuisance and potential vectors that can be encountered when traveling in tropical or sub-tropical countries, has shown the value of a reflection on the Personal protection against vectors (PPAV). It is seen during an outbreak of vector-borne disease, or simply because of nuisance arthropods, that our fellow citizens try to protect themselves individually by using an arsenal of resources available on the market. Yet most of these means have been neither checked for effectiveness or safety tests, however, essential. Travellers, staff on mission or assignment, are looking for specific information on how to protect themselves or their families. Health workers had at their disposal so far indications that vary widely from one source to another. Therefore it seemed important to the Society of Travel Medicine (SMV) and the French Society of Parasitology (SFP) to initiate a reflection on this theme. This reflection took the form of recommendations for good practice, following the outline established by the French High Health Authority (HAS). The aim was to gather all relevant information, verified and validated and the format to be used not only by health personnel (doctors, pharmacists, nurses), but also by travel agents and individuals. This document highlights the need to take into account the risk of vector-borne diseases, some deadly, and the benefit of various methods of personal protection. The choice of methods is clearly oriented towards those whose effectiveness has been proven and potential risks assessed. The paper finally proposes two decision trees based on the transmission type (day or night) and kind of stay (short or roaming, long and steady). It concerns travellers, but also expatriates, residents and nomads.


Viennet E.,CIRAD - Agricultural Research for Development | Viennet E.,Australian National University | Garros C.,CIRAD - Agricultural Research for Development | Rakotoarivony I.,CIRAD - Agricultural Research for Development | And 11 more authors.
PLoS ONE | Year: 2012

Feeding success of free-living hematophagous insects depends on their ability to be active when hosts are available and to reach places where hosts are accessible. When the hematophagous insect is a vector of pathogens, determining the components of host-seeking behavior is of primary interest for the assessment of transmission risk. Our aim was to describe endo/exophagy and circadian host-seeking activity of Palaearctic Culicoides species, which are major biting pests and arbovirus vectors, using drop traps and suction traps baited with four sheep, as bluetongue virus hosts. Collections were carried out in the field, a largely-open stable and an enclosed stable during six collection periods of 24 hours in April/May, in late June and in September/October 2010 in western France. A total of 986 Culicoides belonging to 13 species, mainly C. brunnicans and C. obsoletus, was collected on animal baits. Culicoides brunnicans was clearly exophagic, whereas C. obsoletus was able to enter stables. Culicoides brunnicans exhibited a bimodal pattern of host-seeking activity with peaks just after sunrise and sunset. Culicoides obsoletus was active before sunset in spring and autumn and after sunset in summer, thus illustrating influence of other parameters than light, especially temperature. Description of host-seeking behaviors allowed us to discuss control strategies for transmission of Culicoides-borne pathogens, such as bluetongue virus. However, practical vector-control recommendations are difficult to provide because of the variation in the degree of endophagy and time of host-seeking activity. © 2012 Viennet et al.


PubMed | Instituto Zooprofilattico Sperimentale Dellabruzzo E Del Molise G Caporale, British Petroleum, Office National de Securite Sanitaire des produits Alimentaires ONSSA, Montpellier University and 18 more.
Type: Journal Article | Journal: Molecular ecology | Year: 2016

Understanding the demographic history and genetic make-up of colonizing species is critical for inferring population sources and colonization routes. This is of main interest for designing accurate control measures in areas newly colonized by vector species of economically important pathogens. The biting midge Culicoides imicola is a major vector of orbiviruses to livestock. Historically, the distribution of this species was limited to the Afrotropical region. Entomological surveys first revealed the presence of C.imicola in the south of the Mediterranean basin by the 1970s. Following recurrent reports of massive bluetongue outbreaks since the 1990s, the presence of the species was confirmed in northern areas. In this study, we addressed the chronology and processes of C.imicola colonization in the Mediterranean basin. We characterized the genetic structure of its populations across Mediterranean and African regions using both mitochondrial and nuclear markers, and combined phylogeographical analyses with population genetics and approximate Bayesian computation. We found a west/east genetic differentiation between populations, occurring both within Africa and within the Mediterranean basin. We demonstrated that three of these groups had experienced demographic expansions in the Pleistocene, probably because of climate changes during this period. Finally, we showed that C.imicola could have colonized the Mediterranean basin in the Late Pleistocene or Early Holocene through a single event of introduction; however, we cannot exclude the hypothesis involving two routes of colonization. Thus, the recent bluetongue outbreaks are not linked to C.imicola colonization event, but rather to biological changes in the vector or the virus.


Mathieu B.,University of Strasbourg | Cetre-Sossah C.,CIRAD - Agricultural Research for Development | Garros C.,CIRAD - Agricultural Research for Development | Chavernac D.,CIRAD - Agricultural Research for Development | And 7 more authors.
Parasites and Vectors | Year: 2012

Background and methods: The appearance of bluetongue virus (BTV) in 2006 within northern Europe exposed a lack of expertise and resources available across this region to enable the accurate morphological identification of species of Culicoides Latreille biting midges, some of which are the major vectors of this pathogen. This work aims to organise extant Culicoides taxonomic knowledge into a database and to produce an interactive identification key for females of Culicoides in the Western Palaearctic (IIKC: Interactive identification key for Culicoides). We then validated IIKC using a trial carried out by six entomologists based in this region with variable degrees of experience in identifying Culicoides. Results: The current version of the key includes 98 Culicoides species with 10 morphological variants, 61 descriptors and 837 pictures and schemes. Validation was carried out by six entomologists as a blind trial with two users allocated to three classes of expertise (beginner, intermediate and advanced). Slides were identified using a median of seven steps and seven minutes and user confidence in the identification varied from 60% for failed identifications to a maximum of 80% for successful ones. By user class, the beginner group successfully identified 44.6% of slides, the intermediate 56.8% and the advanced 74.3%. Conclusions: Structured as a multi-entry key, IIKC is a powerful database for the morphological identification of female Culicoides from the Western Palaearctic region. First developed for use as an interactive identification key, it was revealed to be a powerful back-up tool for training new taxonomists and to maintain expertise level. The development of tools for arthropod involvement in pathogen transmission will allow clearer insights into the ecology and dynamics of Culicoides and in turn assist in understanding arbovirus epidemiology. © 2012 Mathieu et al.; licensee BioMed Central Ltd.


PubMed | Montpellier University, CIRAD - Agricultural Research for Development, Instituto Zooprofilattico Sperimentale Dellabruzzo E Del Molise G Caporale and EID Mediterranee
Type: | Journal: Parasites & vectors | Year: 2016

Introduction of vector species into new areas represents a main driver for the emergence and worldwide spread of vector-borne diseases. This poses a substantial threat to livestock economies and public health. Culicoides imicola Kieffer, a major vector species of economically important animal viruses, is described with an apparent range expansion in Europe where it has been recorded in south-eastern continental France, its known northern distribution edge. This questioned on further C. imicola population extension and establishment into new territories. Studying the spatio-temporal genetic variation of expanding populations can provide valuable information for the design of reliable models of future spread.Entomological surveys and population genetic approaches were used to assess the spatio-temporal population dynamics of C. imicola in France. Entomological surveys (2-3 consecutive years) were used to evaluate population abundances and local spread in continental France (28 sites in the Var department) and in Corsica (4 sites). We also genotyped at nine microsatellite loci insects from 3 locations in the Var department over 3 years (2008, 2010 and 2012) and from 6 locations in Corsica over 4 years (2002, 2008, 2010 and 2012).Entomological surveys confirmed the establishment of C. imicola populations in Var department, but indicated low abundances and no apparent expansion there within the studied period. Higher population abundances were recorded in Corsica. Our genetic data suggested the absence of spatio-temporal genetic changes within each region but a significant increase of the genetic differentiation between Corsican and Var populations through time. The lack of intra-region population structure may result from strong gene flow among populations. We discussed the observed temporal variation between Corsica and Var as being the result of genetic drift following introduction, and/or the genetic characteristics of populations at their range edge.Our results suggest that local range expansion of C. imicola in continental France may be slowed by the low population abundances and unsuitable climatic and environmental conditions.


PubMed | Onderstepoort Veterinary Institute, University of the Balearic Islands, Autonomous University of Barcelona, The Pirbright Institute and 3 more.
Type: | Journal: Parasites & vectors | Year: 2015

Culicoides biting midges are biological vectors of internationally important arboviruses of livestock and equines. Insecticides are often employed against Culicoides as a part of vector control measures, but systematic assessments of their efficacy have rarely been attempted. The objective of the present study is to determine baseline susceptibility of multiple Culicoides vector species and populations in Europe and Africa to the most commonly used insecticide active ingredients. Six active ingredients are tested: three that are based on synthetic pyrethroids (alpha-cypermethrin, deltamethrin and permethrin) and three on organophosphates (phoxim, diazinon and chlorpyrifos-methyl).Susceptibility tests were conducted on 29,064 field-collected individuals of Culicoides obsoletus Meigen, Culicoides imicola Kieffer and a laboratory-reared Culicoides nubeculosus Meigen strain using a modified World Health Organization assay. Populations of Culicoides were tested from seven locations in four different countries (France, Spain, Senegal and South Africa) and at least four concentrations of laboratory grade active ingredients were assessed for each population.The study revealed that insecticide susceptibility varied at both a species and population level, but that broad conclusions could be drawn regarding the efficacy of active ingredients. Synthetic pyrethroid insecticides were found to inflict greater mortality than organophosphate active ingredients and the colony strain of C. nubeculosus was significantly more susceptible than field populations. Among the synthetic pyrethroids, deltamethrin was found to be the most toxic active ingredient for all species and populations.The data presented represent the first parallel and systematic assessment of Culicoides insecticide susceptibility across several countries. As such, they are an important baseline reference to monitor the susceptibility status of Culicoides to current insecticides and also to assess the toxicity of new active ingredients with practical implications for vector control strategies.


PubMed | Institute Pasteur Paris, Montpellier University and EID Mediterranee
Type: Journal Article | Journal: Parasites & vectors | Year: 2016

Ultra-low volume (ULV) insecticidal aerosols dispensed from vehicle-mounted cold-foggers are widely considered the method of choice for control of Aedes aegypti and Ae. albopictus during outbreaks of dengue and chikungunya and, more recently, Zika. Nevertheless, their effectiveness has been poorly studied, particularly in Europe. Nearly all published studies of ULV efficacy are bio-assays based on the mortality of caged mosquitoes. In our study we preferred to monitor the direct impact of treatments on the wild mosquito populations. This study was undertaken to evaluate the efficiency of the two widely used space spraying methods to control Ae. albopictus and Ae. aegypti.We determined the susceptibility of local Ae. albopictus to deltamethrin by two methods: topical application and the WHO Tube Test. We used ovitraps baited with hay infusion and adult traps (B-G Sentinel) baited with a patented attractant to monitor the mosquitoes in four residential areas in Nice, southern France. The impact of deltamethrin applied from vehicle-mounted ULV fogging-machines was assessed by comparing trap results in treated vs untreated areas for 5days before and 5days after treatment. Four trials were conducted at the maximum permitted application rate (1g.haSusceptibility to the insecticide was high but there was no discernable change in the oviposition rate or the catch of adult female mosquitoes, nor was there any change in the parous rate. In contrast, hand-held thermal foggers were highly effective, with more than 90% reduction of both laid eggs and females.We believe that direct monitoring of the wild mosquito populations gives a realistic assessment of the impact of treatments and suggest that the lack of efficacy is due to lack of interaction between the target mosquitoes and the ULV aerosol. We discuss the factors that influence the effectiveness of both methods of spraying in the context of epidemic situations.

Loading EID Mediterranee collaborators
Loading EID Mediterranee collaborators