El Segundo, CA, United States

Efficient Power Conversion

epc-co.com
El Segundo, CA, United States
SEARCH FILTERS
Time filter
Source Type

Patent
Efficient Power Conversion | Date: 2014-07-30

An enhancement-mode GaN transistor with reduced gate leakage current between a gate contact and a 2DEG region and a method for manufacturing the same. The enhancement-mode GaN transistor including a GaN layer, a barrier layer disposed on the GaN layer with a 2DEG region formed at an interface between the GaN layer and the barrier layer, and source contact and drain contacts disposed on the barrier layer. The GaN transistor further includes a p-type gate material formed above the barrier layer and between the source and drain contacts and a gate metal disposed on the p-type gate material, with wherein the p-type gate material including comprises a pair of self-aligned ledges that extend toward the source contact and drain contact, respectively.


Patent
Efficient Power Conversion | Date: 2017-02-16

Circuits, structures and techniques for independently connecting a surrounding material in a part of a semiconductor device to a contact of its respective device. To achieve this, a combination of one or more conductive wells that are electrically isolated in at least one bias polarity are provided.


Patent
Efficient Power Conversion | Date: 2015-10-07

An electrical circuit arranged in a half bridge topology. The electrical circuit includes a high side transistor; a low side transistor; a gate driver and level shifter electrically coupled to a gate of the high side transistor; a gate driver electrically coupled to a gate of the low side transistor; a capacitor electrically coupled in parallel with the gate driver and level shifter; a voltage source electrically coupled to an input of the gate driver and level shifter and an input of the gate driver; and, a bootstrap transistor electrically coupled between the voltage source and the capacitor. A GaN field-effect transistor is synchronously switched with a low side device of the half bridge circuit.


Patent
Efficient Power Conversion | Date: 2014-07-30

An enhancement-mode GaN transistor with reduced gate leakage current between a gate contact and a 2DEG region and a method for manufacturing the same. The enhancement-mode GaN transistor including a GaN layer, a barrier layer disposed on the GaN layer with a 2DEG region formed at an interface between the GaN layer and the barrier layer, and source contact and drain contacts disposed on the barrier layer. The GaN transistor further includes a p-type gate material formed above the barrier layer and between the source and drain contacts and a gate metal disposed on the p-type gate material, with wherein the p-type gate material including comprises a pair of self-aligned ledges that extend toward the source contact and drain contact, respectively.


Patent
Efficient Power Conversion | Date: 2015-12-03

An integrated circuit having a substrate, a buffer layer formed over the substrate, a barrier layer formed over the buffer layer, and an isolation region that isolates an enhancement mode device from a depletion mode device. The integrated circuit further includes a first gate contact for the enhancement mode device that is disposed in one gate contact recess and a second gate contact for the depletion mode device that is disposed in a second gate contact recess.


Patent
Efficient Power Conversion | Date: 2015-03-24

A method and system for electrically connect a semiconductor device with a flip-chip form factor to a printed circuit board. An exemplary embodiment of the method comprises: aligning solder contacts on the device with a first copper contact and a second copper contact of the external circuitry, and, applying a supply current only directly to a buried layer of the first copper and not directly to the layer which is nearest the device, such that no current is sourced to the device through the layer nearest the device.


Patent
Efficient Power Conversion | Date: 2014-09-04

A circuit and technique are provided to control bias setting to an FET based common source RF amplifier that can operate with large signals present. The circuit and technique described herein use a second FET in an identical circuit having the gate circuits connected in parallel and being sourced by the same drain voltage that serves as a reference to a first circuit bias setting. The drain current in a first FET will include both the bias and RF amplification current, whereas the second FET only carries the bias current. Because the devices and circuits are matched, the gate voltage variations will appear in both FETs thereby providing regulation of the drain current.


Patent
Efficient Power Conversion | Date: 2014-07-02

An integrated semiconductor device which includes a substrate layer, a buffer layer formed on the substrate layer, a gallium nitride layer formed on the buffer layer, and a barrier layer formed on the gallium nitride layer. Ohmic contacts for a plurality of transistor devices are formed on the barrier layer. Specifically, a plurality of first ohmic contacts for the first transistor device are formed on a first portion of the surface of the barrier layer, and a plurality of second ohmic contacts for the second transistor device are formed on a second portion of the surface of the barrier layer. In addition, one or more gate structures formed on a third portion of the surface of the barrier between the first and second transistor devices. Preferably, the one or more gate structures and the spaces between the gate structures and the source contacts of the transistor devices collectively form an isolation region that electrically isolates the first transistor device from the second transistor device.


A method for forming an enhancement mode GaN HFET device with an isolation area that is self-aligned to a contact opening or metal mask window. Advantageously, the method does not require a dedicated isolation mask and the associated process steps, thus reducing manufacturing costs. The method includes providing an EPI structure including a substrate, a buffer layer a GaN layer and a barrier layer. A dielectric layer is formed over the barrier layer and openings are formed in the dielectric layer for device contact openings and an isolation contact opening. A metal layer is then formed over the dielectric layer and a photoresist film is deposited above each of the device contact openings. The metal layer is then etched to form a metal mask window above the isolation contact opening and the barrier and GaN layer are etched at the portion that is exposed by the isolation contact opening in the dielectric layer.


Patent
Efficient Power Conversion | Date: 2015-12-04

A GaN transistor with polysilicon layers for creating additional components for an integrated circuit and a method for manufacturing the same. The GaN device includes an EPI structure and an insulating material disposed over EPI structure. Furthermore, one or more polysilicon layers are disposed in the insulating material with the polysilicon layers having one or more n-type regions and p-type regions. The device further includes metal interconnects disposed on the insulating material and vias disposed in the insulating material layer that connect source and drain metals to the n-type and p-type regions of the polysilicon layer.

Loading Efficient Power Conversion collaborators
Loading Efficient Power Conversion collaborators