EEZ CSIC

Granada, Spain
Granada, Spain
SEARCH FILTERS
Time filter
Source Type

Pineda-Molina E.,Laboratorio Of Estudios Cristalograficos | Daddaoua A.,Laboratorio Of Estudios Cristalograficos | Krell T.,EEZ CSIC | Ramos J.L.,EEZ CSIC | And 2 more authors.
Acta Crystallographica Section F: Structural Biology and Crystallization Communications | Year: 2012

Pseudomonas putida PtxS is a member of the LacI protein family of transcriptional regulators involved in glucose metabolism. All genes involved in this pathway are clustered into two operons, kgu and gad. PtxS controls the expression of the kgu and gad operons as well as its own transcription. The PtxS operator is a perfect palindrome, 5′-TGAAACCGGTTTCA-3′, which is present in all three promoters. Crystallization of native PtxS failed, and PtxS-DNA crystals were finally produced by the counter-diffusion technique. A portion of the capillary used for crystal growth was attached to the end of a SPINE standard cap and directly flash-cooled in liquid nitrogen for diffraction tests. A full data set was collected with a beam size of 10 10 m. The crystal belonged to the trigonal space group P3, with unit-cell parameters a = b = 213.71, c = 71.57 Å. Only unhandled crystals grown in capillaries of 0.1 mm inner diameter diffracted X-rays to 1.92 Å resolution. © 2012 International Union of Crystallography All rights reserved.


Matilla M.A.,Bio Iliberis R and D | Pizarro-Tobias P.,Bio Iliberis R and D | Roca A.,Bio Iliberis R and D | Fernandez M.,Bio Iliberis R and D | And 7 more authors.
Journal of Bacteriology | Year: 2011

We report the complete sequence of the 5.7-Mbp genome of Pseudomonas putida BIRD-1, a metabolically versatile plant growth-promoting rhizobacterium that is highly tolerant to desiccation and capable of solubilizing inorganic phosphate and iron and of synthesizing phytohormones that stimulate seed germination and plant growth. Copyright © 2011, American Society for Microbiology. All Rights Reserved.


Wu X.,Brookhaven National Laboratory | Wu X.,State University of New York at Stony Brook | Monchy S.,Brookhaven National Laboratory | Taghavi S.,Brookhaven National Laboratory | And 3 more authors.
FEMS Microbiology Reviews | Year: 2011

Pseudomonas putida is a gram-negative rod-shaped gammaproteobacterium that is found throughout various environments. Members of the species P. putida show a diverse spectrum of metabolic activities, which is indicative of their adaptation to various niches, which includes the ability to live in soils and sediments contaminated with high concentrations of heavy metals and organic contaminants. Pseudomonas putida strains are also found as plant growth-promoting rhizospheric and endophytic bacteria. The genome sequences of several P. putida species have become available and provide a unique tool to study the specific niche adaptation of the various P. putida strains. In this review, we compare the genomes of four P. putida strains: the rhizospheric strain KT2440, the endophytic strain W619, the aromatic hydrocarbon-degrading strain F1 and the manganese-oxidizing strain GB-1. Comparative genomics provided a powerful tool to gain new insights into the adaptation of P. putida to specific lifestyles and environmental niches, and clearly demonstrated that horizontal gene transfer played a key role in this adaptation process, as many of the niche-specific functions were found to be encoded on clearly defined genomic islands. Journal compilation © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. No claim to original US government works.


Camejo D.,CSIC - Center of Edafology and Applied Biology of the Segura | Ortiz-Espin A.,CSIC - Center of Edafology and Applied Biology of the Segura | Lazaro J.J.,EEZ CSIC | Romero-Puertas M.C.,EEZ CSIC | And 3 more authors.
Journal of Proteomics | Year: 2015

Peroxiredoxins (Prxs) have emerged as important factors linking reactive oxygen species (ROS) metabolism to redox-dependent signaling events. Together with ROS, nitric oxide (NO) is a free radical product of the cell metabolism that is essential in the signal transduction. S-Nitrosylation is emerging as a fundamental protein modification for the transduction of NO bioactivity. Using recombinant pea mitochondrial PsPrxII F (PrxII F), the effect of S-nitrosoglutathione (GSNO) and sodium nitroprusside dehydrate (SNP), which are known to mediate protein S-nitrosylation processes, was studied. S-Nitrosylation of the PrxII F was demonstrated using the biotin switch method and LC ESI-QTOF tandem MS analysis. S-nitrosylated PrxII F decreased its peroxidase activity and acquired a new transnitrosylase activity, preventing the thermal aggregation of citrate synthase (CS). For the first time, we demonstrate the dual function for PrxII F as peroxidase and transnitrosylase. This switch was accompanied by a conformational change of the protein that could favor the protein-protein interaction CS-PrxII F. The observed in vivo S-nitrosylation of PrxII F could probably function as a protective mechanism under oxidative and nitrosative stress, such as occurs under salinity. We conclude that we are dealing with a novel regulatory mechanism for this protein by NO. Biological significance: S-Nitrosylation is a post-translational modification that is increasingly viewed as fundamental for the signal transduction role of NO in plants. This study demonstrates that S-nitrosylation of the mitochondrial peroxiredoxin PrxII F induces a conformational change in the protein and provokes a reduction in its peroxidase activity, while acquiring a novel function as transnitrosylase. The implication of this mechanism will increase our understanding of the role of posttranslational modifications in the protein function in plants under stress situations such as salinity, in which NO could act as signaling molecule. © 2015 Elsevier B.V.


PubMed | EEZ CSIC and CSIC - Center of Edafology and Applied Biology of the Segura
Type: | Journal: Data in brief | Year: 2015

S-nitrosylation is emerging as a key post-translational protein modification for the transduction of NO as a signaling molecule in plants. This data article supports the research article entitled Functional and structural changes in plant mitochondrial PrxII F caused by NO [1]. To identify the Cys residues of the recombinant PrxII F modified after the treatment with S-nitrosylating agents we performed the LC ESI-QTOF tandem MS and MALDI peptide mass fingerprinting analysis. Change in A 650nm was monitored to estimate the thermal aggregation of citrate synthase in the presence S-nitrosylated PrxII F. The effect of the temperature on the oligomerization pattern and aggregation of PrxII F was analysed by SDS-PAGE and changes in absorbance at 650nm, respectively.


PubMed | EEZ CSIC and CSIC - Center of Edafology and Applied Biology of the Segura
Type: | Journal: Journal of proteomics | Year: 2015

Peroxiredoxins (Prxs) have emerged as important factors linking reactive oxygen species (ROS) metabolism to redox-dependent signaling events. Together with ROS, nitric oxide (NO) is a free radical product of the cell metabolism that is essential in the signal transduction. S-Nitrosylation is emerging as a fundamental protein modification for the transduction of NO bioactivity. Using recombinant pea mitochondrial PsPrxII F (PrxII F), the effect of S-nitrosoglutathione (GSNO) and sodium nitroprusside dehydrate (SNP), which are known to mediate protein S-nitrosylation processes, was studied. S-Nitrosylation of the PrxII F was demonstrated using the biotin switch method and LC ESI-QTOF tandem MS analysis. S-nitrosylated PrxII F decreased its peroxidase activity and acquired a new transnitrosylase activity, preventing the thermal aggregation of citrate synthase (CS). For the first time, we demonstrate the dual function for PrxII F as peroxidase and transnitrosylase. This switch was accompanied by a conformational change of the protein that could favor the protein-protein interaction CS-PrxII F. The observed in vivo S-nitrosylation of PrxII F could probably function as a protective mechanism under oxidative and nitrosative stress, such as occurs under salinity. We conclude that we are dealing with a novel regulatory mechanism for this protein by NO.S-Nitrosylation is a post-translational modification that is increasingly viewed as fundamental for the signal transduction role of NO in plants. This study demonstrates that S-nitrosylation of the mitochondrial peroxiredoxin PrxII F induces a conformational change in the protein and provokes a reduction in its peroxidase activity, while acquiring a novel function as transnitrosylase. The implication of this mechanism will increase our understanding of the role of posttranslational modifications in the protein function in plants under stress situations such as salinity, in which NO could act as signaling molecule.


Jerez-Valle C.,University of Granada | Garcia-Lopez P.A.,University of Granada | Campos M.,EEZ CSIC | Pascual F.,University of Granada
Spanish Journal of Agricultural Research | Year: 2015

The cultivation of the olive tree (Olea europaea L.) has great importance in the entire Mediterranean basin, so that the implementation of organic practices in their management directly affects the sustainability of the agricultural system. Bioindication with arthropods can help to detect the different agricultural practices. In this work, we analyse the most appropriate methodology for discriminating between management using arthropods at the taxonomic level of order, with the novelty of taking into account the weather conditions to select the sampling dates. Between 12 and 15 sampling stations (depending on the year) were selected from olive orchards belonging to organic, conventional non-tillage, and strict conventional management, being sampled by beating the canopy fortnightly in the spring-summer period of 2007, 2008 and 2009. Organic management was more abundant and richer than the rest for the three years. Most groups with significant differences in terms of relative abundance were more abundant in organic orchard, except Neuroptera. Finally, different discriminant methods were evaluated (Linear Discriminant Analysis, Multiple Discriminant Analysis, and Support Vector Machine) with several different data sets. The discriminant analysis with interannual variability reached 97.9% accuracy in differentiating between organic and non-organic management using the LDA method, considering the taxa with significant differences from the abundance, excluding pests, and using samples with more uniform and stable weather patterns (late summer). © 2015 INIA.


Daniels C.,EEZ CSIC | Godoy P.,EEZ CSIC | Duque E.,EEZ CSIC | Molina-Henares M.A.,EEZ CSIC | And 7 more authors.
Journal of Bacteriology | Year: 2010

Pseudomonas putida DOT-T1E was used as a model to develop a "phenomics" platform to investigate the ability of P. putida to grow using different carbon, nitrogen, and sulfur sources and in the presence of stress molecules. Results for growth of wild-type DOT-T1E on 90 different carbon sources revealed the existence of a number of previously uncharted catabolic pathways for compounds such as salicylate, quinate, phenylethanol, gallate, and hexanoate, among others. Subsequent screening on the subset of compounds on which wild-type DOT-TIE could grow with four knockout strains in the global regulatory genes Δcrc, Δcrp, ΔcyoB, and ΔptsN allowed analysis of the global response to nutrient supply and stress. The data revealed that most global regulator mutants could grow in a wide variety of substrates, indicating that metabolic fluxes are physiologically balanced. It was found that the Crc mutant did not differ much from the wild-type regarding the use of carbon sources. However, certain pathways are under the preferential control of one global regulator, i.e., metabolism of succinate and D-fructose is influenced by CyoB, and L-arginine is influenced by PtsN. Other pathways can be influenced by more than one global regulator; i.e., L-valine catabolism can be influenced by CyoB and Crp (cyclic AMP receptor protein) while phenylethylamine is affected by Crp, CyoB, and PtsN. These results emphasize the cross talk required in order to ensure proper growth and survival. With respect to N sources, DOT-T1E can use a wide variety of inorganic and organic nitrogen sources. As with the carbon sources, more than one global regulator affected growth with some nitrogen sources; for instance, growth with nucleotides, dipeptides, D-amino acids, and ethanolamine is influenced by Crp, CyoB, and PtsN. A surprising finding was that the Crp mutant was unable to flourish on ammonium. Results for assayed sulfur sources revealed that CyoB controls multiple points in methionine/cysteine catabolism while PtsN and Crc are needed for N-acetyl-L-cysteamine utilization. Growth of global regulator mutants was also influenced by stressors of different types (antibiotics, oxidative agents, and metals). Overall and in combination with results for growth in the presence of various stressors, these phenomics assays provide multifaceted insights into the complex decision-making process involved in nutrient supply, optimization, and survival. Copyright © 2010, American Society for Microbiology. All Rights Reserved.


Codesido V.,EEZ CSIC | Fernandez-Lopez J.,CIF Lourizan
European Journal of Forest Research | Year: 2014

A juvenile radiata pine clonal seed orchard (Pinus radiata D. Don) in Sergude (northwestern Spain), comprising 57 clones, was evaluated for fertility, offspring diversity and genetic drift during 4 years. Flower and fruit production was used to asses clone fertility in the orchard. Fertility variation measured as "sibling coefficient" was found to be an average of 1.5, having high genetic diversity (0.99) and low coancestry (0.013). The clones varied in fertility from year to year. Effective population size in the orchard was between 35 and 40, indicating that between 60.30 and 69 %, the clones contributed effectively to seed yield. One way to improve seed yield in the orchard is by increasing the effective population size. Thinning and pruning highly reproductive clones of gibberellin application might be useful in increasing effective population size. The orchard's parental balance showed consistent improvement over time. Cone and seed characteristics were also investigated. The results showed that significant genetic variation exists among clones for cone width and length; total, sound and empty seed number; as well as 100 seed weight. The seed orchard is still in a juvenile phase; moreover, the broad-sense heritability and variation data obtained in this study could be very valuable in the management practices of the existing radiata pine clonal seed orchard and can be also used for better planning of advanced generation of clonal seed orchards in Spain. © 2013 Springer-Verlag Berlin Heidelberg.


Torres-Vera R.,EEZ CSIC | Garcia J.M.,EEZ CSIC | Pozo M.J.,EEZ CSIC | Lopez-Raez J.A.,EEZ CSIC
Physiological and Molecular Plant Pathology | Year: 2016

Root parasitic plants of the family Orobanchaceae cause severe damage to important agricultural crops worldwide. These parasitic weeds are difficult to control since most of their lifecycle occurs belowground. This hinders the diagnosis of infection and normally when irreversible damage has been caused to the crop. Therefore, new and more effective control strategies against these parasitic weeds should be focused on the initial stages of the interaction. Using tomato-Phelipanche ramosa as model system, we have explored the host response during the initial phase of parasitic infection by monitoring the expression of marker genes of different defense-related hormonal pathways. Two different colonization stages were selected and analyzed by quantitative real-time PCR. The data suggest that the three principal defense regulating hormonal pathways - salicylic acid (SA), jasmonic acid (JA) and abscisic acid (ABA) - are induced after infection, being therefore, likely involved in the defense response against these root parasites. In addition, an induction of the strigolactone (SL) biosynthesis genes SlD27 and SlCCD8 was observed. Our results suggest a complex regulation of plant defenses during the early stages of plant-parasite interaction involving the classical defense hormones, and suggest an additional role of the parasite germination stimulants SLs at this post-attachment stage. © 2016 Elsevier Ltd.

Loading EEZ CSIC collaborators
Loading EEZ CSIC collaborators