Eesti Maaulikool

Tartu, Estonia

Eesti Maaulikool

Tartu, Estonia

Time filter

Source Type

Grant
Agency: European Commission | Branch: H2020 | Program: ERA-NET-Cofund | Phase: SC5-15-2015 | Award Amount: 52.36M | Year: 2016

In the last decade a significant number of projects and programmes in different domains of environmental monitoring and Earth observation have generated a substantial amount of data and knowledge on different aspects related to environmental quality and sustainability. Big data generated by in-situ or satellite platforms are being collected and archived with a plethora of systems and instruments making difficult the sharing of data and knowledge to stakeholders and policy makers for supporting key economic and societal sectors. The overarching goal of ERA-PLANET is to strengthen the European Research Area in the domain of Earth Observation in coherence with the European participation to Group on Earth Observation (GEO) and the Copernicus. The expected impact is to strengthen the European leadership within the forthcoming GEO 2015-2025 Work Plan. ERA-PLANET will reinforce the interface with user communities, whose needs the Global Earth Observation System of Systems (GEOSS) intends to address. It will provide more accurate, comprehensive and authoritative information to policy and decision-makers in key societal benefit areas, such as Smart cities and Resilient societies; Resource efficiency and Environmental management; Global changes and Environmental treaties; Polar areas and Natural resources. ERA-PLANET will provide advanced decision support tools and technologies aimed to better monitor our global environment and share the information and knowledge in different domain of Earth Observation.


Grant
Agency: European Commission | Branch: FP7 | Program: CP | Phase: ENV.2013.6.2-1 | Award Amount: 11.66M | Year: 2014

MARS will support managers and policy makers in the practical implementation of the WFD, of related legislation and of the Blueprint to Safeguard Europes Water Resources by conducting new research and synthesising existing knowledge concerning effects and management of multiple stressors in surface water and groundwater bodies; by advising the 3rd RMBP cycle and the revision of the WFD; and by developing new integrated tools for diagnosing and predicting multiple stressors in water resource management. The consortium includes 19 research institutes and five water boards and environment agencies. MARS will engage with ongoing and finalised European initiatives addressing related topics, thus acting as an integrating project. Work will be organised at the scales of water bodies, river basins and Europe; at each scale there is a direct link to water managers and decision makers. Nested within the scale structure, we will employ a suite of methods: flume and mesocosm experiments to better understand the effects of selected stressor combinations with a focus on extremes and hydrological stress; linkage of abiotic and biotic models to predict effects of stressor combinations at a river basin scale; large-scale data analysis employing existing databases, but including additional variables, to gain a Europe-wide overview of stress, status and ecosystem services. MARS will be composed of eight workpackages (WPs). While WP1 will be responsible for overall coordination, WP2 will provide tools, concepts and scenarios for the other WPs. WPs 3-5 will analyse and predict multiple stressor-impact relationships on three scales: water bodies (WP3), river basins (WP4) and Europe (WP5); the results will be synthesised across scales by WP6. WP7 will generate a wiki information system and produce or improve tools addressing the three scales. WP8 will communicate with river basin districts and Common Implementation Strategy (CIS) groups and will advise the WFD revision.


Grant
Agency: European Commission | Branch: H2020 | Program: MSCA-ITN-EJD | Phase: MSCA-ITN-2016 | Award Amount: 3.06M | Year: 2017

Environmental perturbations to lakes and reservoirs occur largely as episodic climatic events. These range from relatively short mixing events to storms and heat waves. While the driving events occur along a continuum of frequency and magnitude, however, their effect is generally longer lasting than the events themselves. In addition, the more extreme weather events are now becoming increasingly frequent, a trend that has been linked to directional climate change and is projected to continue in the coming decades. Understanding the impact of these short-lived pressures requires monitoring that captures the event (hoursdays) and the ensuing impact, that can last for months or even years. Only recently has automated high frequency monitoring (HFM) of lakes been adopted throughout Europe. This Training Network will investigate the effects of the most extreme events, and of cumulative lower magnitude events, using HFM, while at the same time training a cohort of doctoral students in state-of-the art technology, data analysis and modelling. The aim of the EJD is to change the way in which water quality monitoring is carried out so that the effects of episodic climatic events can be understood, thus ensuring that future water management strategies can explicitly account for their effects.


Grant
Agency: European Commission | Branch: FP7 | Program: CP-CSA | Phase: Fission-2013-2.1.1 | Award Amount: 10.28M | Year: 2013

Preparing NUGENIA for HORIZON 2020 The objective of the NUGENIA\ project is to support the NUGENIA Association in its role to coordinate and integrate European research on safety of the Gen II and III nuclear installations in order to better ensure their safe long term operation, integrating private and public efforts, and initiating international collaboration that will create added value in its activity fields. The project consists of two parts, the first part being a Coordination and Support Action and the second part a Collaborative Project. The aim of the first part, the Coordination and Support Action, is to establish an efficient, transparent and high quality management structure to carry out the planning and management of R&D including project calls, proposal evaluation, project follow-up dissemination and valorisation of R&D results in the area of safety of existing Gen II and future Gen III nuclear installations. The preparatory work will encompass governance, organizational, legal and financial work, as well as the establishment of annual work plans, with the aim to structure public-public and/or private-public joint programming enabling NUGENIA to develop into the integrator of the research in the respective field in Europe. The management structure will build on the existing organisation of the NUGENIA Association, currently grouping over 70 nuclear organisations from research and industry (utilities, vendors and small and medium enterprises) active in R&D. In the second part, the Collaborative project, one thematic call for research proposals will be organized among the technical areas of plant safety and risk assessment, severe accident prevention and management, core and reactor performance, integrity assessment of systems, structures and components, innovative Generation III design and harmonisation of procedures and methods. The call will take place one year after the start of the project. The call will implement the priorities recognised in the NUGENIA Roadmap, in line with the Sustainable Nuclear Energy Technology Platform (SNETP) and International Atomic Energy Agency (IAEA) strategies. The research call which is going to be organised within the project is open to all eligible organisations. The NUGENIA\ project will benefit from the experience of the NUGENIA Association member organisations on managing national research programmes and from the track record of the NUGENIA project portfolio.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: PHC-04-2015 | Award Amount: 6.00M | Year: 2016

The BlueHealth Consortium brings together a multi-disciplinary team of experts reaching across all 28 European Union countries. The proposed 4.5 year BlueHealth Project takes an international, interdisciplinary and multi-sector approach to health promotion and disease prevention by investigating the relationship between the EUs blue infrastructure and the health and well-being of its citizens. Blue infrastructure refers to the network of natural and man-made aquatic environments providing a range of multi-sectorial services (e.g. transportation, fresh water provision). There has been no systematic attempt to detail the potential impacts of our blue infrastructure on health promotion and disease prevention, nor to develop guidelines on how health should be considered when developing blue infrastructure interventions, particularly across sectors. BlueHealth will address this gap. The majority of Europeans live in cities built on inland waterways, lakes, or the coasts. BlueHealth will focus on urban blue infrastructures. The EUs blue infrastructure offers significant health and well-being related opportunities and benefits (eg urban cooling, recreation), but also challenges and stressors (eg flooding, microbial/chemical pollution). BlueHealth will investigate these trade-offs, with the aims of quantifying the impacts on population health and well-being of interventions and policy initiatives connected to blue infrastructure, and identifying success factors and obstacles of inter-sectorial collaborations. Assessments of health and environment benefits, risks and costs will improve our understanding of the role of urban blue infrastructures on across-sector health promotion and disease prevention. The Partners have collaborations across the Environment, Health, and Climate sectors, and extensive experience with inter-institutional, multi-sectorial, interdisciplinary research programmes employing innovation, stakeholder engagement, dissemination, and policy impact.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: SFS-04-2014 | Award Amount: 6.88M | Year: 2015

Knowledge regarding the complex interplay between agricultural land use and management and soil quality and function is fragmented and incomplete, in particular with regard to underlying principles and regulating mechanisms. The main aim of iSQAPER is to develop an interactive soil quality assessment tool (SQAPP) for agricultural land users that integrates newly derived process understanding and accounts for the impact of agricultural land use and management on soil properties and functions, and related ecosystem services. For this purpose, >30 long-term experimental field trials in the EU and China will be analysed to derive regulating principles for integration in SQAPP. SQAPP will be developed using a multi-actor approach aiming at facilitating social innovation and providing options to land users for cost-effective agricultural management activities to enhance soil quality and crop productivity. SQAPP will be tested extensively in 14 dedicated Case Study Sites in the EU and China covering a wide spectrum of farming systems and pedo-climatic zones, and rolled-out across the continents thereafter. Within the Case Study sites a range of alternative agricultural practices will be selected, implemented and evaluated with regard to effects on improving soil quality and crop productivity. Proven practices will be evaluated for their potential applicability at EU and China levels, and to assess the related soil environmental footprint under current and future agricultural trends and various agricultural policy scenarios. How the soil quality tool can be utilized for different policy purposes, e.g. in cross compliance and agro-environmental measures, will also be investigated and demonstrated. A comprehensive dissemination and communication strategy, including a web-based information portal, will ensure that project results are available to a variety of stakeholders at the right time and in appropriate formats to enhance soil quality and productivity in the EU and China.


Grant
Agency: European Commission | Branch: H2020 | Program: CSA | Phase: EE-09-2015 | Award Amount: 1.79M | Year: 2016

The aim of PANEL 2050 project is to create durable and replicable sustainable energy networks at local (municipality/community) level, where relevant local stakeholders collaborate for the creation of a local energy visions, strategies and action plans for the transition towards low carbon communities in 2050. The PANEL 2050 project will focus on the creation of these sustainable local energy networks in CEE countries, where this type of networks at local level is almost completely absent and therefore additional support is needed for the creation of the first successful local energy networks that have the potential to set an example and a new standard for local energy road mapping in other local communities in the CEE region. Furthermore, the PANEL 2050 project will not choose a specific focus on a certain type of stakeholder, but will try to work at the local level and assemble all relevant and available stakeholders related to sustainable energy. The number and type of stakeholders will vary very much in different local settings and the ambition of this project is to create sustainable energy networks at local level that will connect and involve all relevant stakeholders that are present at local level into the local policy development and implementation. At present, the involvement of local shareholders in local policy development in any field in CEE countries is very limited and the aim of this project is to create durable sustainable energy networks in a number of local communities in different CEE countries that will also be a replicable example that can be spread to other communities in CEE countries. Introducing stakeholder concept to energy planning will help generate sustainable energy policies and create more sustainable future for Europe.


Grant
Agency: European Commission | Branch: FP7 | Program: CP-FP | Phase: KBBE.2012.1.2-02 | Award Amount: 3.82M | Year: 2013

The project aims to identify the key semi-natural habitats (SNH), outside and within crops, providing essential ecological services (ES). Vegetation traits will be linked to potential ES provision, case studies will measure actual ES levels and inform models which will show unused opportunities and trade-offs among ES by SNH from habitat to landscape scale. This will be achieved for a range of representative cropping systems and farming intensities in regions dominated by agriculture and matched to the requirements of local and national stakeholders. Surveys will identify key SNH and existing literature will be used to link their vegetation traits to ES provision. ES provision will be measured in existing habitat types (SNH to crop) across economically important cropping systems, farming intensities and four European agro-climatic zones using simple techniques in 16 case studies. A case study is defined by a unique combination of region, crop species, and service. Each case study will concentrate on locally important cropping system and the main ES required. Pollination and pest control have been identified as main ES needed, but also soil fertility, weed control and social services will be considered. The relative socio-economic weight of the studied ecosystem services will be appraised using feedback from national experts using a semi-quantitative method. Data will parameterise spatially explicit models to determine how the vegetation composition, management, shape, area, and placement of SNH in agricultural landscapes affect the distribution of mobile-agent based ecosystem services from farm to landscape level. To investigate synergies and trade-offs in ecological services, multi-criteria analysis will be developed to combine a suite of modules in an integrative modelling framework. Outputs are designed to inform local, national and EU stakeholders on how to improve ES provision from SNH and will include a novel web-based tool.


Grant
Agency: European Commission | Branch: H2020 | Program: CSA | Phase: ISIB-02-2015 | Award Amount: 2.11M | Year: 2016

The Data Driven Dairy Decisions for Farmers (4D4F) thematic network will focus on the role which dairy animal and environmental sensors can play in collecting real time information to help make more informed decisions in dairy farming. The network will develop a Community of Practice comprised of farmers, farm advisors, technology suppliers, knowledge exchange professionals and researchers who will work together to debate, collect and communicate best practice drawn from innovative farmers, industry and the research community to facilitate the co-creation of best practice. The results will be communicated to farmers using best practice guides on the use of sensors and data analysis tools supported by videos, infographics and an online virtual warehouse of dairy sensor technologies. The network will include the development of Standard Operating Procedures (SOPs) which can be tailored to individual farms to help farmers and farm advisors adopt dairy sensor and data analysis technology. The SOPs will be developed by working groups of the Community of Practice including farmers, farm advisors, technology suppliers, knowledge exchange professionals and researchers, who will work together to develop farmer friendly SOPs. The on line Community of Practice and published communication tools will be complimented by on farm events and workshops to help farmers and farm advisors implement innovative sensor and data analysis technologies. The workshops and events will promote discussion between farmers and their peers on how best to use sensors and data analysis in their own businesses. This will lead to local peer to peer support to facilitate the adoption of data driven dairy decision making. The network will work closely with EIP Agri and at member state level it will work with existing EIP Operational Groups working on dairy data and sensors and, where suitable Operational Groups do not exist, it will work with local partners to develop new Operational Groups.


Grant
Agency: European Commission | Branch: H2020 | Program: CSA | Phase: H2020-TWINN-2015 | Award Amount: 1.00M | Year: 2016

The aim of the SEARMET project is to improve the scientific knowledge and innovation capacity of the Estonian University of Life Sciences (EMU) in the linked fields of animal reproductive medicine and embryo technology. This will be done by strengthening collaboration with two high-ranking foreign academic institutions: Sheffield University (USFD), a leading university in the field of reproductive physiology and in the gametes and embryo maternal interaction and Copenhagen University (UCPH), which is a model of excellence in the in vitro production (IVP) of bovine embryos and in induced pluripotent stem cells (iPSC) research. Furthermore, in order to achieve scientific excellence in animal reproductive medicine, EMU must also work to make stronger linkages with human reproductive research. For this reason, EMUs long-time collaborator within Estonia, the University of Tartu (UTARTU) will participate as a 4th partner. Due to their high level of competence in making this link, both USFD and UCPH will serve as mentors in this process as well. In addition to building bridges to human reproductive research, EMU will increase its research excellence by improving staff expertise, expanding its network of potential scientific partners and building the overall capacity of the organization so that it can become a leader in the field. By doing so, EMU will achieve a greater impact in both the scientific community and in society by reaching out to key stakeholders such as industrial actors so as to exploit the results of research.

Loading Eesti Maaulikool collaborators
Loading Eesti Maaulikool collaborators