Entity

Time filter

Source Type

Berkshire, United Kingdom

Secker A.,University of Kent | Davies M.N.,Edward Jenner Institute | Freitas A.A.,University of Kent | Clark E.B.,University of York | And 2 more authors.
International Journal of Data Mining and Bioinformatics | Year: 2010

We address the important bioinformatics problem of predicting protein function from a protein's primary sequence. We consider the functional classification of G-Protein-Coupled Receptors (GPCRs), whose functions are specified in a class hierarchy. We tackle this task using a novel top-down hierarchical classification system where, for each node in the class hierarchy, the predictor attributes to be used in that node and the classifier to be applied to the selected attributes are chosen in a data-driven manner. Compared with a previous hierarchical classification system selecting classifiers only, our new system significantly reduced processing time without significantly sacrificing predictive accuracy. Copyright © 2010 Inderscience Enterprises Ltd. Source

Discover hidden collaborations