Time filter

Source Type

Calais J.B.,University of Sao Paulo | Valvassori S.S.,National University of Santa | Resende W.R.,National University of Santa | Feier G.,National University of Santa | And 6 more authors.
Journal of Neural Transmission | Year: 2013

Electroconvulsive therapy (ECT) is a well-established psychiatric treatment for severe depression. Despite its clinical utility, post-ECT memory deficits are a common side effect. Neuronal plasticity and memory consolidation are intimately related to the expression of immediate early genes (IEG), such as Egr1, Fos and Arc. Changes in IEG activation have been postulated to underlie long-term neuronal adaptations following electroconvulsive seizures (ECS), an animal model of ECT. To test this hypothesis, we used real-time PCR to examine the effect of acute and chronic ECS (8 sessions, one every other day) on the long-term (>24 h) expression of IEG Egr1, Fos and Arc in the hippocampus, a brain region implicated both in the pathophysiology of depression as well as in memory function. We observed a transient increase in Egr1 and Fos expression immediately after ECS, followed by a long-term decrease of IEG levels after both acute and chronic ECS. A separate group of animals, submitted to the same chronic ECS protocol and then subjected to open field or passive avoidance tasks, confirmed robust memory deficits 2 weeks after the last chronic ECS. The possible role of IEG downregulation on long-term learning deficits observed following ECS are discussed. © 2012 Springer-Verlag. Source

Costa M.R.,Federal University of Rio Grande do Norte | Costa M.R.,Edmond and Lily Safra International Institute of Neuroscience of Natal ELS IINN | Ortega F.,Ludwig Maximilians University of Munich | Brill M.S.,Ludwig Maximilians University of Munich | And 8 more authors.
Development | Year: 2011

Little is known about the intrinsic specification of adult neural stem cells (NSCs) and to what extent they depend on their local niche. To observe adult NSC division and lineage progression independent of their niche, we isolated cells from the adult mouse subependymal zone (SEZ) and cultured them at low density without growth factors. We demonstrate here that SEZ cells in this culture system are primarily neurogenic and that adult NSCs progress through stereotypic lineage trees consisting of asymmetric stem cell divisions, symmetric transit-amplifying divisions and final symmetric neurogenic divisions. Stem cells, identified by their astro/radial glial identity and their slow-dividing nature, were observed to generate asymmetrically and fast-dividing cells that maintained an astro/radial glia identity. These, in turn, gave rise to symmetrically and fast-dividing cells that lost glial hallmarks, but had not yet acquired neuronal features. The number of amplifying divisions was limited to a maximum of five in this system. Moreover, we found that cell growth correlated with the number of subsequent divisions of SEZ cells, with slow-dividing astro/radial glia exhibiting the most substantial growth prior to division. The fact that in the absence both of exogenously supplied growth factors and of signals provided by the local niche neurogenic lineage progression takes place in such stereotypic fashion, suggests that lineage progression is, to a significant degree, cell intrinsic or pre-programmed at the beginning of the lineage. © 2011. Published by The Company of Biologists Ltd. Source

Del-Ben C.M.,University of Sao Paulo | Ferreira C.A.Q.,University of Sao Paulo | Sanchez T.A.,University of Sao Paulo | Alves-Neto W.C.,University of Sao Paulo | And 5 more authors.
Journal of Psychopharmacology | Year: 2012

This study aimed to measure, using fMRI, the effect of diazepam on the haemodynamic response to emotional faces. Twelve healthy male volunteers (mean age = 24.83 ± 3.16 years), were evaluated in a randomized, balanced-order, double-blind, placebo-controlled crossover design. Diazepam (10 mg) or placebo was given 1 h before the neuroimaging acquisition. In a blocked design covert face emotional task, subjects were presented with neutral (A) and aversive (B) (angry or fearful) faces. Participants were also submitted to an explicit emotional face recognition task, and subjective anxiety was evaluated throughout the procedures. Diazepam attenuated the activation of right amygdala and right orbitofrontal cortex and enhanced the activation of right anterior cingulate cortex (ACC) to fearful faces. In contrast, diazepam enhanced the activation of posterior left insula and attenuated the activation of bilateral ACC to angry faces. In the behavioural task, diazepam impaired the recognition of fear in female faces. Under the action of diazepam, volunteers were less anxious at the end of the experimental session. These results suggest that benzodiazepines can differentially modulate brain activation to aversive stimuli, depending on the stimulus features and indicate a role of amygdala and insula in the anxiolytic action of benzodiazepines. © The Author(s) 2012. Source

Blanco W.,Federal University of Rio Grande do Norte | Blanco W.,State University of Rio Grande do Norte | Pereira C.M.,Edmond and Lily Safra International Institute of Neuroscience of Natal ELS IINN | Cota V.R.,Federal University of Rio Grande do Norte | And 9 more authors.
PLoS Computational Biology | Year: 2015

Sleep is critical for hippocampus-dependent memory consolidation. However, the underlying mechanisms of synaptic plasticity are poorly understood. The central controversy is on whether long-term potentiation (LTP) takes a role during sleep and which would be its specific effect on memory. To address this question, we used immunohistochemistry to measure phosphorylation of Ca2+/calmodulin-dependent protein kinase II (pCaMKIIα) in the rat hippocampus immediately after specific sleep-wake states were interrupted. Control animals not exposed to novel objects during waking (WK) showed stable pCaMKIIα levels across the sleep-wake cycle, but animals exposed to novel objects showed a decrease during subsequent slow-wave sleep (SWS) followed by a rebound during rapid-eye-movement sleep (REM). The levels of pCaMKIIα during REM were proportional to cortical spindles near SWS/REM transitions. Based on these results, we modeled sleep-dependent LTP on a network of fully connected excitatory neurons fed with spikes recorded from the rat hippocampus across WK, SWS and REM. Sleep without LTP orderly rescaled synaptic weights to a narrow range of intermediate values. In contrast, LTP triggered near the SWS/REM transition led to marked swaps in synaptic weight ranking. To better understand the interaction between rescaling and restructuring during sleep, we implemented synaptic homeostasis and embossing in a detailed hippocampal-cortical model with both excitatory and inhibitory neurons. Synaptic homeostasis was implemented by weakening potentiation and strengthening depression, while synaptic embossing was simulated by evoking LTP on selected synapses. We observed that synaptic homeostasis facilitates controlled synaptic restructuring. The results imply a mechanism for a cognitive synergy between SWS and REM, and suggest that LTP at the SWS/REM transition critically influences the effect of sleep: Its lack determines synaptic homeostasis, its presence causes synaptic restructuring. © 2015 Blanco et al. Source

De Araujo D.B.,Federal University of Rio Grande do Norte | De Araujo D.B.,Onofre Lopes University Hospital | De Araujo D.B.,University of Sao Paulo | Ribeiro S.,Federal University of Rio Grande do Norte | And 9 more authors.
Human Brain Mapping | Year: 2012

The hallucinogenic brew Ayahuasca, a rich source of serotonergic agonists and reuptake inhibitors, has been used for ages by Amazonian populations during religious ceremonies. Among all perceptual changes induced by Ayahuasca, the most remarkable are vivid "seeings." During such seeings, users report potent imagery. Using functional magnetic resonance imaging during a closed-eyes imagery task, we found that Ayahuasca produces a robust increase in the activation of several occipital, temporal, and frontal areas. In the primary visual area, the effect was comparable in magnitude to the activation levels of natural image with the eyes open. Importantly, this effect was specifically correlated with the occurrence of individual perceptual changes measured by psychiatric scales. The activity of cortical areas BA30 and BA37, known to be involved with episodic memory and the processing of contextual associations, was also potentiated by Ayahuasca intake during imagery. Finally, we detected a positive modulation by Ayahuasca of BA 10, a frontal area involved with intentional prospective imagination, working memory and the processing of information from internal sources. Therefore, our results indicate that Ayahuasca seeings stem from the activation of an extensive network generally involved with vision, memory, and intention. By boosting the intensity of recalled images to the same level of natural image, Ayahuasca lends a status of reality to inner experiences. It is therefore understandable why Ayahuasca was culturally selected over many centuries by rain forest shamans to facilitate mystical revelations of visual nature. © 2011 Wiley Periodicals, Inc. Source

Discover hidden collaborations