Dutton Park, Australia
Dutton Park, Australia

Time filter

Source Type

Pascoe S.,CSIRO | Innes J.,CSIRO | Courtney A.,Ecosciences Precinct | Kienzle M.,Ecosciences Precinct | Kienzle M.,University of Queensland
Fisheries Research | Year: 2017

The Moreton Bay prawn trawl fishery is one of Queensland's oldest commercial fisheries, but is currently economically unsustainable. The fishery is characterized by a mix of large and small vessels, with the small vessels facing different licensing and boat replacement restrictions to the large. Industry have proposed the removal of the current two-for-one boat replacement policy that affects the smaller vessels to encourage investment and replacement by larger vessels, although there is concern by managers about the impact of this on total fishing effort and sustainability of the stocks, despite the existence of a total cap in vessel capacity units. We estimate the impact of removing the boat replacement policy for the smaller vessels on fleet performance and total fishing effort, and find that removing the boat replacement policy is unlikely to result in a substantial increase in fishing effort due to the existence of a vessel unitization scheme. © 2016

Cottle D.J.,University of New England of Australia | Velazco J.,University of New England of Australia | Velazco J.,National Institute of Agricultural Research | Hegarty R.S.,University of New England of Australia | Mayer D.G.,Ecosciences Precinct
Animal | Year: 2015

Spot measurements of methane emission rate (n = 18 700) by 24 Angus steers fed mixed rations from GrowSafe feeders were made over 3-to 6-min periods by a GreenFeed emission monitoring (GEM) unit. The data were analysed to estimate daily methane production (DMP; g/day) and derived methane yield (MY; g/kg dry matter intake (DMI)). A one-compartment dose model of spot emission rate v. time since the preceding meal was compared with the models of Wood (1967) and Dijkstra et al. (1997) and the average of spot measures. Fitted values for DMP were calculated from the area under the curves. Two methods of relating methane and feed intakes were then studied: the classical calculation of MY as DMP/DMI (kg/day); and a novel method of estimating DMP from time and size of preceding meals using either the data for only the two meals preceding a spot measurement, or all meals for 3 days prior. Two approaches were also used to estimate DMP from spot measurements: fitting of splines on a 'per-animal per-day' basis and an alternate approach of modelling DMP after each feed event by least squares (using Solver), summing (for each animal) the contributions from each feed event by best-fitting a one-compartment model. Time since the preceding meal was of limited value in estimating DMP. Even when the meal sizes and time intervals between a spot measurement and all feeding events in the previous 72 h were assessed, only 16.9% of the variance in spot emission rate measured by GEM was explained by this feeding information. While using the preceding meal alone gave a biased (underestimate) of DMP, allowing for a longer feed history removed this bias. A power analysis taking into account the sources of variation in DMP indicated that to obtain an estimate of DMP with a 95% confidence interval within 5% of the observed 64 days mean of spot measures would require 40 animals measured over 45 days (two spot measurements per day) or 30 animals measured over 55 days. These numbers suggest that spot measurements could be made in association with feed efficiency tests made over 70 days. Spot measurements of enteric emissions can be used to define DMP but the number of animals and samples are larger than are needed when day-long measures are made. © 2015 The Animal Consortium.

Dundon S.G.,LEP Consultant | Mayer D.G.,Ecosciences Precinct
Small Ruminant Research | Year: 2015

Summer in the Persian Gulf region presents physiological challenges for Australian sheep that are part of the live export supply chain coming from the Australian winter. Many feedlots throughout the Gulf have very high numbers of animals during June to August in order to cater for the increased demand for religious festivals. From an animal welfare perspective it is important to understand the necessary requirements of feed and water trough allowances, and the amount of pen space required, to cope with exposure to these types of climatic conditions. This study addresses parameters that are pertinent to the wellbeing of animals arriving in the Persian Gulf all year round.Three experiments were conducted in a feedlot in the Persian Gulf between March 2010 and February 2012, totalling 44 replicate pens each with 60 or 100 sheep. The applied treatments covered animal densities, feed-bunk lengths and water trough lengths. Weights, carcass attributes and health status were the key recorded variables. Weight change results showed superior performance for animal densities of ≥1.2m2/head during hot conditions (24-h average temperatures greater than 33°C, or a diurnal range of around 29-37°C). However the space allowance for animals can be decreased, with no demonstrated detrimental effect, to 0.6m2/head under milder conditions. A feed-bunk length of ≥5cm/head is needed, as 2cm/head showed significantly poorer animal performance. When feeding at 90% ad libitum 10cm/head was optimal, however under a maintenance feeding regime (1kg/head/day) 5cm/head was adequate. A minimum water trough allowance of 1cm/head is required. However, this experiment was conducted during milder conditions, and it may well be expected that larger water trough lengths would be needed in hotter conditions.Carcass weights were determined mainly by weights at feedlot entry and subsequent weight gains, while dressing percentage was not significantly affected by any of the applied treatments. There was no demonstrated effect of any of the treatments on the number of animals that died, or were classified as unwell. However, across all the treatments, these animals lost significantly more weight than the healthy animals, so the above recommendations, which are aimed at maintaining weight, should also be applicable for good animal health and welfare.Therefore, best practice guidelines for managing Australian sheep in Persian Gulf feedlots in the hottest months (June-August) which present the greatest environmental and physical challenge is to allow feed-bunk length 5cm/head on a maintenance-feeding program and 10cm/head for 90% ad libitum feeding, and the space allowance per animal should be ≥1.2m2/head. Water trough allocation should be at least 1cm/head with provision for more in the summer when water intake potentially doubles. © 2015.

Steward A.L.,Ecosciences Precinct | Steward A.L.,Griffith University | Von Schiller D.,Catalan Institute for Water Research | Tockner K.,Leibniz Institute of Freshwater Ecology and Inland Fisheries | And 2 more authors.
Frontiers in Ecology and the Environment | Year: 2012

Temporary rivers and streams that naturally cease to flow and dry up can be found on every continent. Many other water courses that were once perennial now also have temporary flow regimes due to the effects of water extraction for human use or as a result of changes in land use and climate. The dry beds of these temporary rivers are an integral part of river landscapes. We discuss their importance in human culture and their unique diversity of aquatic, amphibious, and terrestrial biota. We also describe their role as seed and egg banks for aquatic biota, as dispersal corridors and temporal ecotones linking wet and dry phases, and as sites for the storage and processing of organic matter and nutrients. In light of these valuable functions, dry riverbeds need to be fully integrated into river management policies and monitoring programs. We also identify key knowledge gaps and suggest research questions concerning the values of dry riverbeds. © The Ecological Society of America.

Steward A.L.,Griffith University | Marshall J.C.,Ecosciences Precinct | Sheldon F.,Griffith University | Harch B.,CSIRO | And 3 more authors.
Aquatic Sciences | Year: 2011

Dry river beds are common worldwide and are rapidly increasing in extent due to the effects of water management and prolonged drought periods due to climate change. While attention has been given to the responses of aquatic invertebrates to drying rivers, few studies exist on the terrestrial invertebrates colonizing dry river beds. Dry river beds are physically harsh and they often differ substantially in substrate, topography, microclimate and inundation frequency from adjacent riparian zones. Given these differences, we predicted that dry river beds provide a unique habitat for terrestrial invertebrates, and that their assemblage composition differs from that in adjacent riparian zones. Dry river beds and riparian zones in Australia and Italy were sampled for terrestrial invertebrates with pitfall traps. Sites differed in substrate type, climate and flow regime. Dry river beds contained diverse invertebrate assemblages and their composition was consistently different from adjacent riparian zones, irrespective of substrate, climate or hydrology. Although some taxa were shared between dry river beds and riparian zones, 66 of 320 taxa occurred only in dry river beds. Differences were due to species turnover, rather than shifts in abundance, indicating that dry river bed assemblages are not simply subsets of riparian assemblages. Some spatial patterns in invertebrate assemblages were associated with environmental variables (irrespective of habitat type), but these associations were statistically weak. We suggest that dry river beds are unique habitats in their own right. We discuss potential human stressors and management issues regarding dry river beds and provide recommendations for future research. © 2011 Springer Basel AG.

Barnett A.,University of Tasmania | Braccini J.M.,Ecosciences Precinct | Awruch C.A.,University of Tasmania | Awruch C.A.,CONICET | And 2 more authors.
Journal of Fish Biology | Year: 2012

The large size, high trophic level and wide distribution of Hexanchiformes (cow and frilled sharks) should position this order as important apex predators in coastal and deep-water ecosystems. This review synthesizes available information on Hexanchiformes, including information not yet published, with the purpose of evaluating their conservation status and assessing their ecological roles in the dynamics of marine ecosystems. Comprising six species, this group has a wide global distribution, with members occurring from shallow coastal areas to depths of c. 2500 m. The limited information available on their reproductive biology suggests that they could be vulnerable to overexploitation (e.g. small litter sizes for most species and suspected long gestation periods). Most of the fishing pressure exerted on Hexanchiformes is in the form of commercial by-catch or recreational fishing. Comprehensive stock and impact assessments are unavailable for most species in most regions due to limited information on life history and catch and abundance time series. When hexanchiform species have been commercially harvested, however, they have been unable to sustain targeted fisheries for long periods. The potentially high vulnerability to intense fishing pressure warrants a conservative exploitation of this order until thorough quantitative assessments are conducted. At least some species have been shown to be significant apex predators in the systems they inhabit. Should Hexanchiformes be removed from coastal and deep-water systems, the lack of sympatric shark species that share the same resources suggests no other species would be capable of fulfilling their apex predator role in the short term. This has potential ecosystem consequences such as meso-predator release or trophic cascades. This review proposes some hypotheses on the ecology of Hexanchiformes and their role in ecosystem dynamics, highlighting the areas where critical information is required to stimulate research directions. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

Tan E.T.T.,University of Queensland | Tan E.T.T.,University Technology of MARA | Materne C.M.,Arid Zone Research Institute | Silcock R.G.,Ecosciences Precinct | And 3 more authors.
Journal of Agricultural and Food Chemistry | Year: 2016

Livestock industries have maintained a keen interest in pasture legumes because of the high protein content and nutritive value. Leguminous Indigofera plant species have been considered as having high feeding values to be utilized as pasture, but the occurrence of the toxic constituent indospicine in some species has restricted this utility. Indospicine has caused both primary and secondary hepatotoxicosis and also reproductive losses, but has only previously been determined in a small number of Indigofera species. This paper validates a high-throughput ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method to determine the indospicine content of various Indigofera species found in Australian pasture. Twelve species of Indigofera together with Indigastrum parviflorum plants were collected and analyzed. Of the 84 samples analyzed, ∗I. spicata (the asterisk indicates a naturalized species) contained the highest indospicine level (1003 ± 328 mg/kg DM, n = 4) followed by I. linnaei (755 ± 490 mg/kg DM, n = 51). Indospicine was not detected in 9 of the remaining 11 species and at only low levels (<10 mg/kg DM) in 2 of 8 I. colutea specimens and in 1 of 5 I. linifolia specimens. Indospicine concentrations were below quantitation levels for other Indigofera spp. (I. adesmiifolia, I. georgei, I. hirsuta, I. leucotricha, ∗I. oblongifolia, I. australis, and I. trita) and Indigastrum parviflorum. One of the more significant findings to emerge from this study is that the indospicine content of I. linnaei is highly variable (from 159 to 2128 mg/kg DM, n = 51) and differs across both regions and seasons. Its first regrowth after spring rain has a higher (p < 0.01) indospicine content than growth following more substantial summer rain. The species collected include the predominant Indigofera in Australia pasture, and of these, only ∗I. spicata and I. linnaei contain high enough levels of indospicine to pose a potential toxic threat to grazing herbivores. © 2016 American Chemical Society.

Pagendam D.E.,EcoSciences Precinct | Percival D.B.,University of Washington
Water Resources Research | Year: 2015

Detiding end-of-catchment flow data are an important step in determining the total volumes of freshwater (and associated pollutant loads) entering the ocean. We examine three approaches for separating freshwater and tidal flows from tidally affected data: (i) a simple low-pass Butterworth filter (BWF); (ii) a robust, harmonic analysis with Kalman smoothing (RoHAKS) which is a novel approach introduced in this paper; and (iii) dynamic harmonic regression (DHR). Using hydrographic data collected in the Logan River, Australia, over a period of 452 days, we judge the accuracy of the three methods based on three criteria: consistency of freshwater flows with upstream gauges; consistency of total discharge volumes with the raw data over the event; and minimal upstream flow. A simulation experiment shows that RoHAKS outperforms both BWF and DHR on a number of criteria. In addition, RoHAKS enjoys a computational advantage over DHR in speed and use of freely available software. Key Points: RoHAKS gives improved estimates of freshwater flow Detiding methods can exhibit periods of upstream flow Detiding based on robust statistical methods shows improved performance © 2015 Commonwealth Scientific and Industrial Research Organisation, Australia. Water Resources Research © 2015 American Geophysical Union.

Page K.L.,Ecosciences Precinct | Dalal R.C.,Ecosciences Precinct
Soil Research | Year: 2011

Greenhouse gas (GHG) flux from wetland systems, both in their natural state and following drainage, has not been well accounted for in the carbon accounting process. We review GHG production from both natural and drained wetlands, and estimate the likely GHG emissions from these systems in Australia. Only a small number of studies have quantified GHG emissions from undisturbed Australian wetland environments. Consequently, in order to estimate GHG flux for Australia, it was necessary to collate data collected overseas from similar climatic zones. Using this approach, it appears that undisturbed, vegetated wetlands in Australia are likely to be net GHG sinks, with the greatest rates of sequestration occurring in mangrove ecosystems (2669g CO2-e/m 2.year) where biomass production is high but CH4 emissions are limited by salinity. The uncertainty surrounding these values is high, however, due to (a) the low number of measurements from Australia, (b) the low number of measurements for CO2 flux, and (c) the low number of studies where all GHGs have been measured concurrently. It was estimated that the drainage of melaleuca and mangrove forest wetlands in Australia would turn them from carbon sinks into carbon sources, and that in the first 50 years since drainage, this has increased global warming potential by 1149 Tg CO2-e or 23 Tg CO2-e/year. This is significant given that GHG emissions due to land-use change in 2007 totalled 77.1 Tg CO2-e. However, data surrounding the area of wetlands drained, carbon stocks in drained wetlands, and the effect of drainage on CH4 and N 2O flux are limited, making the uncertainty surrounding these estimates high. Further study is clearly required if Australia wishes to accurately incorporate wetland systems into national carbon and greenhouse gas accounting budgets. © CSIRO 2011.

Kienzle M.,Ecosciences Precinct | Kienzle M.,University of Queensland
Journal of Agricultural, Biological, and Environmental Statistics | Year: 2016

Fisheries management agencies around the world collect age data for the purpose of assessing the status of natural resources in their jurisdiction. Estimates of mortality rates represent a key information to assess the sustainability of fish stocks exploitation. Contrary to medical research or manufacturing where survival analysis is routinely applied to estimate failure rates, survival analysis has seldom been applied in fisheries stock assessment despite similar purposes between these fields of applied statistics. In this paper, we developed hazard functions to model the dynamic of an exploited fish population. These functions were used to estimate all parameters necessary for stock assessment (including natural and fishing mortality rates as well as gear selectivity) by maximum likelihood using age data from a sample of catch. This novel application of survival analysis to fisheries stock assessment was tested by Monte Carlo simulations to assert that it provided unbiased estimations of relevant quantities. The method was applied to the data from the Queensland (Australia) sea mullet (Mugil cephalus) commercial fishery collected between 2007 and 2014. It provided, for the first time, an estimate of natural mortality affecting this stock: (Formula presented.)   year (Formula presented.). © 2015, International Biometric Society.

Loading Ecosciences Precinct collaborators
Loading Ecosciences Precinct collaborators