Time filter

Source Type

Morlon H.,Ecole Polytechnique - Palaiseau
Ecology Letters

Estimating rates of speciation and extinction, and understanding how and why they vary over evolutionary time, geographical space and species groups, is a key to understanding how ecological and evolutionary processes generate biological diversity. Such inferences will increasingly benefit from phylogenetic approaches given the ever-accelerating rates of genetic sequencing. In the last few years, models designed to understand diversification from phylogenetic data have advanced significantly. Here, I review these approaches and what they have revealed about diversification in the natural world. I focus on key distinctions between different models, and I clarify the conclusions that can be drawn from each model. I identify promising areas for future research. A major challenge ahead is to develop models that more explicitly take into account ecology, in particular the interaction of species with each other and with their environment. This will not only improve our understanding of diversification; it will also present a new perspective to the use of phylogenies in community ecology, the science of interaction networks and conservation biology, and might shift the current focus in ecology on equilibrium biodiversity theories to non-equilibrium theories recognising the crucial role of history. © 2014 John Wiley & Sons Ltd/CNRS. Source

Ecole Polytechnique - Palaiseau and French National Center for Scientific Research | Date: 2014-01-13

The present invention relates to a multimode local probe microscope having a resonator (

The invention relates to an arrangement for producing a proton beam. This arrangement is characterized in that it is constituted by a laser driven accelerator of protons adapted to produce a beam of relativistic protons of 0.5 GeV to 1 GeV with a current in the order of tens of mA, such as a current of 20 mA. The invention can be used for transmutating nuclear waste.

Ecole Polytechnique - Palaiseau and Center Nationale Of La Recherche Scientique | Date: 2013-07-23

A method of fabricating a transparent and birefringent mineral solid thin layer comprises the following steps: a) preparing a colloidal solution constituted by anisotropic mineral nanoparticles in suspension in a dispersion liquid; b) depositing the colloidal solution on a surface of a substrate by spreading as a thin layer while applying directional shear stress tangentially to the surface of the substrate so as to deposit the colloidal solution as a liquid thin layer on the surface of the substrate, the value of the shear stress and the concentration of mineral nanoparticles in the colloidal solution being determined in such a manner as to cause the anisotropic mineral nanoparticles to be aligned along the direction of the shear stress tangential to the surface of the substrate; and c) drying the liquid thin layer by evaporating the dispersion liquid.

French Atomic Energy Commission, French National Center for Scientific Research and Ecole Polytechnique - Palaiseau | Date: 2014-02-07

Metallopolymers of formula (I) where R

Discover hidden collaborations