Entity

Time filter

Source Type

Chamonix-Mont-Blanc, France

Lundby C.,University of Zurich | Robach P.,Ecole Nationale des Sports de Montagne
Experimental Physiology | Year: 2016

What is the topic of this review? The aim is to evaluate the effectiveness of various altitude training strategies as investigated within the last few years. What advances does it highlight? Based on the available literature, the foundation to recommend altitude training to athletes is weak. Athletes may use one of the various altitude training strategies to improve exercise performance. The scientific support for such strategies is, however, not as sound as one would perhaps imagine. The question addressed in this review is whether altitude training should be recommended to elite athletes or not. © 2016 The Authors. Experimental Physiology © 2016 The Physiological Society Source


Lundby C.,University of Zurich | Lundby C.,Gothenburg University | Robach P.,Ecole Nationale des Sports de Montagne
Physiology | Year: 2015

Our objective is to highlight some key physiological determinants of endurance exercise performance and to discuss how these can be further improved. V˙O2max remains remarkably stable throughout an athletic career. By contrast, exercise economy, lactate threshold, and critical power may be improved in world-class athletes by specific exercise training regimes and/or with more years of training. © 2015 Int. Union Physiol. Sci./Am. Physiol. Soc. Source


Siebenmann C.,University of Zurich | Robach P.,Ecole Nationale des Sports de Montagne | Jacobs R.A.,University of Zurich | Rasmussen P.,University of Zurich | And 6 more authors.
Journal of Applied Physiology | Year: 2012

The combination of living at altitude and training near sea level [live high-train low (LHTL)] may improve performance of endurance athletes. However, to date, no study can rule out a potential placebo effect as at least part of the explanation, especially for performance measures. With the use of a placebo-controlled, double-blinded design, we tested the hypothesis that LHTL-related improvements in endurance performance are mediated through physiological mechanisms and not through a placebo effect. Sixteen endurance cyclists trained for 8 wk at low altitude (<1,200 m). After a 2-wk lead-in period, athletes spent 16 h/day for the following 4 wk in rooms flushed with either normal air (placebo group, n = 6) or normobaric hypoxia, corresponding to an altitude of 3,000 m (LHTL group, n = 10). Physiological investigations were performed twice during the lead-in period, after 3 and 4 wk during the LHTL intervention, and again, 1 and 2 wk after the LHTL intervention. Questionnaires revealed that subjects were unaware of group classification. Weekly training effort was similar between groups. Hb mass, maximal oxygen uptake (VO 2) in normoxia, and at a simulated altitude of 2,500 m and mean power output in a simulated, 26.15-km time trial remained unchanged in both groups throughout the study. Exercise economy (i.e., VO 2 measured at 200 W) did not change during the LHTL intervention and was never significantly different between groups. In conclusion, 4 wk of LHTL, using 16 h/day of normobaric hypoxia, did not improve endurance performance or any of the measured, associated physiological variables. Copyright © 2012 the American Physiological Society. Source


Robach P.,Ecole Nationale des Sports de Montagne | Bonne T.,Copenhagen University | Fluck D.,University of Zurich | Burgi S.,University of Zurich | And 4 more authors.
Medicine and Science in Sports and Exercise | Year: 2014

Purpose: The effects of hypoxic training on exercise performance remain controversial. Here, we tested the hypotheses that i) hypoxic training possesses ergogenic effects at sea level and altitude and ii) the benefits are primarily mediated by improved mitochondrial function of the skeletal muscle. Methods: We determined aerobic performance (incremental test to exhaustion and time trial for a set amount of work) in moderately trained subjects undergoing 6 wk of endurance training (3-4 times per week, 60 min per session) in normoxia (placebo, n = 8) or normobaric hypoxia (FIO2 = 0.15, n = 9) using a double-blind and randomized design. Exercise tests were performed in normoxia and acute hypoxia (FIO2 = 0.15). Skeletal muscle mitochondrial respiratory capacities and electron coupling efficiencies were measured via high-resolution respirometry. Total hemoglobin mass was assessed by carbon monoxide rebreathing. Results: Skeletal muscle respiratory capacity was not altered by training or hypoxia; however, electron coupling control respective to fat oxidation slightly diminished with hypoxic training. Hypoxic training did increase total hemoglobin mass more than the placebo (8.4% vs 3.3%, P = 0.02). In normoxia, hypoxic training had no additive effect on maximal measures of oxygen uptake or time trial performance. In acute hypoxia, hypoxic training conferred no advantage on maximal oxygen uptake but tended to enhance time trial performance more than normoxic training (52% vs 32%, P = 0.09). Conclusions: Our data suggest that, in moderately trained subjects, 6 wk of hypoxic training possesses no ergogenic effect at sea level. It is not excluded that hypoxic training might facilitate endurance capacity at moderate altitude; however, this issue is still open and needs to be further examined. Copyright © 2014 by the American College of Sports Medicine. Source


Mazzarino M.,Sportiva | Cesarei L.,Sportiva | de la Torre X.,Sportiva | Fiacco I.,Sportiva | And 4 more authors.
Journal of Pharmaceutical and Biomedical Analysis | Year: 2016

This work presents an analytical method for the simultaneous analysis in human urine of 38 pharmacologically active compounds (19 benzodiazepine-like substances, 7 selective serotonin reuptake inhibitors, 4 azole antifungal drugs, 5 inhibitors of the phosphodiesterases type 4 and 3 inhibitors of the phosphodiesterase type 5) by liquid-chromatography coupled with tandem mass spectrometry. The above substances classes include both the most common "non banned" drugs used by the athletes (based on the information reported on the "doping control form") and those drugs who are suspected to be performance enhancing and/or act as masking agents in particular conditions. The chromatographic separation was performed by a reverse-phase octadecyl column using as mobile phases acetonitrile and ultra-purified water, both with 0.1% formic acid. The detection was carried out using a triple quadrupole mass spectrometric analyser, positive electro-spray as ionization source and selected reaction monitoring as acquisition mode. Sample pre-treatment consisted in an enzymatic hydrolysis followed by a liquid-liquid extraction in neutral field using tert-butyl methyl-ether. The analytical procedure, once developed, was validated in terms of sensitivity (lower limits of detection in the range of 1-50ngmL-1), specificity (no interferences were detected at the retention time of all the analytes under investigation), recovery (≥60% with a satisfactory repeatability, CV % lower than 10), matrix effect (lower than 30%) and reproducibility of retention times (CV% lower than 0.1) and of relative abundances (CV% lower than 15). The performance and the applicability of the method was evaluated by analyzing real samples containing benzodiazepines (alprazolam, diazepam, zolpidem or zoplicone) or inhibitors of the phosphodiesterases type 5 (sildenafil or vardenafil) and samples obtained incubating two of the phosphodiesterases type 4 studied (cilomilast or roflumilast) with pooled human liver microsomes. All the parent compounds, together with their main phase I metabolites, were clearly detected using the analytical procedures here developed. © 2015 Elsevier B.V. Source

Discover hidden collaborations