Time filter

Source Type


The invention relates to pigments with a non-metallic substrate, wherein the pigments have at least one barrier layer that selectively absorbs light and/or electrons and at least one photocatalytically active layer, wherein the at least one barrier layer is arranged between the non-metallic substrate and the at least one photocatalytically active layer. The invention furthermore relates to a method for producing the pigments and to a coating agent.

ECKART GmbH and Reinhausen Plasma GmbH | Date: 2013-09-16

The invention relates to a method and a device for applying a coating to a substrate, where a plasma jet of a low-temperature plasma is produced by conducting a working gas through an excitation zone. The plasma jet is directed at the substrate, and plate-shaped particles having an average thickness between 10 and 50,000 nanometers and a shape factor in a value range from 10 to 2000 are fed into the plasma jet. The plate-shaped particles are fed into the plasma jet by means of a carrier gas. The plasma jet is produced by exciting the working gas by means of an alternating voltage or a pulsed direct voltage.

Agency: Cordis | Branch: FP7 | Program: CP | Phase: ENERGY.2013.7.3.3 | Award Amount: 3.50M | Year: 2013

The project proposal InFluENCE aims at improving the fundamental understanding and control of interfaces of a battery type based on Li-ion and Na-ion active materials: semi solid flow batteries (SSFB). The fact that the case study will be a SSFB set-up instead of classic lithium ion batteries is an asset, given that the methods and techniques developed are generic and could as well be implemented for conventional Li- and Na-ion systems for the techniques that are not concentrated on flow aspects. A main objective is the investigation and optimization of the interfaces developing between the electrolyte and the electrochemically active material particles in fluid electrodes. The acquired knowledge would allow the chemical and morphological optimization of active materials as well as the design of optimized interfacial layers (also called artificial Solid Electrolyte Interfaces, art-SEI) capable of warrant stable interfaces. A second main objective is the understanding and control the mechanical and conductive behaviours of the slurries. For this, it is necessary to determine the role of shape anisotropy and the overall nature (attractive or repulsive) of the short ranged interactions of the active materials besides the strength of the attractive forces for conductive nano-particles. The cross interaction should allow intimate contact between active material and the conductive particles. The experimental work is accompanied by thorough modelling to understand the physical phenomena occurring at the microscopic scale, to derive scaling rules towards macro-scale and to enable design recommendations leading to optimal interface behaviour (size of anodic and cathodic compartments, geometry of collectors, etc.).

The invention relates to platelet-shaped pearlescent pigments that are coated with at least one mixed inorganic/organic layer for improving their application properties, and of these, particularly their mechanical properties, and to methods for the production thereof and to the use thereof. The said mixed inorganic/organic layer comprises at least one at least partially crosslinked inorganic metal-oxide component and an organic component. The organic component is at least one organic oligomer and/or polymer, which is covalently bonded, at least in part, to the inorganic network via network formers, wherein the coating comprises at least one mixed inorganic/organic layer, which mixed mixed layer comprises, at least in part, an inorganic network having one or more inorganic oxide component(s) and at least one organic component, the organic component being, at least in part, an organic oligomer and/or polymer covalently bonded, at least in part, to the inorganic network via one or more organic network formers. The invention also relates to a method for the production of such pearlescent pigments.

The invention relates to a pigment which reflects IR radiation, comprising an IR-reflecting core, the IR-reflecting core being provided with a substantially enveloping coating which is transparent to IR radiation, and in that the IR-reflecting pigment is substantially white. The invention further relates to a process for producing these pigments and also to their use.

Discover hidden collaborations