EBG MedAustron GmbH

Wiener Neustadt, Austria

EBG MedAustron GmbH

Wiener Neustadt, Austria
Time filter
Source Type

Sihver L.,Vienna University of Technology | Sihver L.,EBG MedAustron GmbH | Berger T.,German Aerospace Center
IEEE Aerospace Conference Proceedings | Year: 2017

The radiation environment encountered in space differs in nature from that on Earth, with contributions of protons and high energetic ions up to iron, resulting in radiation levels far exceeding the ones present on Earth and what is allowed for occupational radiation workers. Accurate knowledge of the physical characteristics of the space radiation field in dependence on the solar activity, the orbital parameters and the different shielding configurations of the International Space Station (ISS) is therefore important. For the investigation of the spatial and temporal distribution of the radiation field inside the European Columbus module the experiment "Dose Distribution inside the ISS" (DOSIS), under the project and science lead of DLR, was launched in July 2009 with STS-127 to the ISS. The DOSIS experiment consists of a combination of "Passive Detector Packages" (PDP) distributed at eleven locations inside Columbus for the measurement of the spatial variation of the radiation field and two active DOSimetry TELescope's (DOSTEL) with a the DOSTEL Data and Power Unit (DDPU) in a dedicated Nomex pouch mounted at a fixed location beneath the EPM rack for the measurement of the temporal variation of the radiation field parameters. The DOSIS experiment suite measured during the lowest solar minimum conditions in the space age from July 2009 to June 2011. In July 2011 the active hardware was transferred to ground for refurbishment and preparation for the follow up DOSIS 3D experiment. The hardware for DOSIS 3D was launched with Soyuz 30S in May 2012. The PDPs are replaced with each even number Soyuz flight starting with Soyuz 30S and with each odd number Soyuz flight starting with Soyuz 45S. Data from the active detectors is transferred to ground via the EPM rack which is activated once a month for this action. This paper will give an overview of the DOSIS and DOSIS 3D experiment and focus on the results from the passive radiation detectors from the DOSIS 3D experiment (2012-2016) in comparison to the data of the DOSIS experiment (2009-2011), and what we can learn from that for the future planned interplanetary space missions. © 2017 IEEE.

Bouchard H.,National Physical Laboratory United Kingdom | Kamio Y.,Center Hospitalier Of Luniversite Of Montreal Chum | Palmans H.,National Physical Laboratory United Kingdom | Palmans H.,EBG MedAustron GmbH | And 2 more authors.
Medical Physics | Year: 2015

Purpose: To quantify detector perturbation effects in megavoltage small photon fields and support the theoretical explanation on the nature of quality correction factors in these conditions. Methods: In this second paper, a modern approach to radiation dosimetry is defined for any detector and applied to small photon fields. Fanos theorem is adapted in the form of a cavity theory and applied in the context of nonstandard beams to express four main effects in the form of perturbation factors. The pencil-beam decomposition method is detailed and adapted to the calculation of perturbation factors and quality correction factors. The approach defines a perturbation function which, for a given field size or beam modulation, entirely determines these dosimetric factors. Monte Carlo calculations are performed in different cavity sizes for different detection materials, electron densities, and extracameral components. Results: Perturbation effects are detailed with calculated perturbation functions, showing the relative magnitude of the effects as well as the geometrical extent to which collimating or modulating the beam impacts the dosimetric factors. The existence of a perturbation zone around the detector cavity is demonstrated and the approach is discussed and linked to previous approaches in the literature to determine critical field sizes. Conclusions: Monte Carlo simulations are valuable to describe pencil beam perturbation effects and detail the nature of dosimetric factors in megavoltage small photon fields. In practice, it is shown that dosimetric factors could be avoided if the field size remains larger than the detector perturbation zone. However, given a detector and beam quality, a full account for the detector geometry is necessary to determine critical field sizes. © 2015 American Association of Physicists in Medicine.

Bouchard H.,National Physical Laboratory United Kingdom | Seuntjens J.,McGill University | Duane S.,National Physical Laboratory United Kingdom | Kamio Y.,Center Hospitalier Of Luniversite Of Montreal Chum | And 2 more authors.
Medical Physics | Year: 2015

Purpose: To explain the reasons for significant quality correction factors in megavoltage small photon fields and clarify the underlying concepts relevant to dosimetry under such conditions. Methods: The validity of cavity theory and the requirement of charged particle equilibrium (CPE) are addressed from a theoretical point of view in the context of nonstandard beams. Perturbation effects are described into four main subeffects, explaining their nature and pointing out their relative importance in small photon fields. Results: It is demonstrated that the failure to meet classical cavity theory requirements, such as CPE, is not the reason for significant quality correction factors. On the contrary, it is shown that the lack of CPE alone cannot explain these corrections and that what matters most, apart from volume averaging effects, is the relationship between the lack of CPE in the small field itself and the density of the detector cavity. The density perturbation effect is explained based on Fanos theorem, describing the compensating effect of two main contributions to cavity absorbed dose. Using the same approach, perturbation effects arising from the difference in atomic properties of the cavity medium and the presence of extracameral components are explained. Volume averaging effects are also discussed in detail. Conclusions: Quality correction factors of small megavoltage photon fields are mainly due to differences in electron density between water and the detector medium and to volume averaging over the detector cavity. Other effects, such as the presence of extracameral components and differences in atomic properties of the detection medium with respect to water, can also play an accentuated role in small photon fields compared to standard beams. © 2015 American Association of Physicists in Medicine.

Palmans H.,EBG MedAustron GmbH | Palmans H.,National Physical Laboratory United Kingdom | Vatnitsky S.M.,EBG MedAustron GmbH
Physics in Medicine and Biology | Year: 2016

We comment on a recent article (Gomà et al 2014 Phys. Med. Biol. 59 4961-71) which compares different routes of reference dosimetry for the energy dependent beam monitor calibration in scanned proton beams. In this article, a 3% discrepancy is reported between a Faraday cup and a plane-parallel ionization chamber in the experimental determination of the number of protons per monitor unit. It is further claimed that similar discrepancies between calorimetry and ionization chamber based dosimetry indicate that -values tabulated for proton beams in IAEA TRS-398 might be overestimated. In this commentary we show, however, that this supporting argument misrepresents the evidence in the literature and that the results presented, together with published data, rather confirm that there exist unresolved problems with Faraday cup dosimetry. We also show that the comparison in terms of the number of protons gives a biased view on the uncertainty estimates for both detectors while the quantity of interest is absorbed dose to water or dose-area-product to water, even if a beam monitor is calibrated in terms of the number of protons. Gomà et al (2014 Phys. Med. Biol. 59 4961-71) also report on the discrepancy between cylindrical and plane-parallel ionization chambers and confirm experimentally that in the presence of a depth dose gradient, theoretical values of the effective point of measurement, or alternatively a gradient correction factor, account for the discrepancy. We believe this does not point to an error or shortcoming of IAEA TRS-398, which prescribes taking the centre of cylindrical ionization chambers as reference point, since it recommends reference dosimetry to be performed in the absence of a depth dose gradient. But these observations reveal that important aspects of beam monitor calibration in scanned proton beams are not addressed in IAEA TRS-398 given that those types of beams were not widely implemented at the time of its publication. © 2016 Institute of Physics and Engineering in Medicine.

Gora J.,Medical University of Vienna | Gora J.,EBG MedAustron GmbH | Stock M.,Medical University of Vienna | Stock M.,Christian Doppler Laboratory | And 3 more authors.
International Journal of Radiation Oncology Biology Physics | Year: 2013

Purpose: To investigate robust margin strategies in intensity modulated proton therapy to account for interfractional organ motion in prostate cancer. Methods and Materials: For 9 patients, one planning computed tomography (CT) scan and daily and weekly cone beam CTs (CBCTs) were acquired and coregistered. The following planning target volume (PTV) approaches were investigated: a clinical target volume (CTV) delineated on the planning CT (CTVct) plus 10-mm margin (PTV10mm); a reduced PTV (PTVRed): CTVct plus 5 mm in the left-right (LR) and anterior-posterior (AP) directions and 8 mm in the inferior-superior (IS) directions; and a PTV Hull method: the sum of CTVct and CTVs from 5 CBCTs from the first week plus 3 mm in the LR and IS directions and 5 mm in the AP direction. For each approach, separate plans were calculated using a spot-scanning technique with 2 lateral fields. Results: Each approach achieved excellent target coverage. Differences were observed in volume receiving 98% of the prescribed dose (V98%) where PTVHull and PTV Red results were superior to the PTV10mm concept. The PTVHull approach was more robust to organ motion. The V98% for CTVs was 99.7%, whereas for PTVRed and PTV10mm plans, V98% was 98% and 96.1%, respectively. Doses to organs at risk were higher for PTVHull and PTV10mm plans than for PTV Red, but only differences between PTV10mm and PTV Red were significant. Conclusions: In terms of organ sparing, the PTV10mm method was inferior but not significantly different from the PTVRed and PTVHull approaches. PTVHull was most insensitive to target motion. © 2013 Elsevier Inc. All rights reserved.

Palmans H.,EBG MedAustron GmbH | Palmans H.,National Physical Laboratory United Kingdom | Vatnitsky S.M.,EBG MedAustron GmbH
Medical Physics | Year: 2016

Purpose: To propose a formalism for the reference dosimetry of scanned light-ion beams consistent with IAEA TRS-398 and Alfonso et al. [Med. Phys. 35, 51795186 (2008)]. To identify machinespecific reference (msr) fields and plan-class specific reference (pcsr) fields consistent with the definitions given by Alfonso et al. To review the literature of beam monitor calibration in scanned beams using three different methods in terms of this common formalism. Methods: Four types of msr fields are identified as those that are meant to calibrate the beam monitor for scanned beams with particular energies. Two types of pcsr fields are identified as those that are meant to apply one or more tuning factors to the entire delivery chain. Results: The formalism establishes the energy-dependent relation between the number of particles incident on the phantom surface and the beam monitor reading and distinguishes three routes to determine the beam monitor calibration function: (i) the use of a calibrated reference ionization chamber in a single-layer scanned beam, (ii) the use of a cross-calibrated large-area parallel plate ionization chamber in a single-energy beamlet, and (iii) the use of a calibrated reference ionization chamber in a box field to adjust a calibration curve obtained by a Faraday cup or an ionization chamber. Examples of all three methods and comparisons between them from the literature are analysed. Conclusions: The formalism can form the basis of future dosimetry recommendations for scanned particle beams and the analysis of the literature data in terms of this formalism can form the basis of data compilations for the application of the dosimetry procedures. © 2016 American Association of Physicists in Medicine.

Dreindl R.,Medical University of Vienna | Dreindl R.,EBG MedAustron GmbH | Georg D.,Medical University of Vienna | Georg D.,Christian Doppler Laboratory | And 2 more authors.
Zeitschrift fur Medizinische Physik | Year: 2014

Gafchromic® EBT2 film is a widely used dosimetric tool for quality assurance in radiation therapy. In 2012 EBT3 was presented as a replacement for EBT2 films. The symmetric structure of EBT3 films to reduce face-up/down dependency as well as the inclusion of a matte film surface to frustrate Newton Ring artifacts present the most prominent improvements of EBT3 films. The aim of this study was to investigate the characteristics of EBT3 films, to benchmark the films against the known EBT2-features and to evaluate the dosimetric behavior over a time period greater than 6 months.All films were irradiated to clinical photon beams (6MV, 10MV and 18MV) on an Elekta Synergy Linac equipped with a Beam Modulator MLC in solid water phantom slabs. Film digitalization was done with a flatbed transparency scanner (Type Epson Expression 1680 Pro). MATLAB® was used for further statistical calculations and image processing.The investigations on post-irradiation darkening, film orientation, film uniformity and energy dependency resulted in negligible differences between EBT2 and EBT3 film. A minimal improvement in face-up/down dependence was found for EBT3. The matte film surface of EBT3 films turned out to be a practical feature as Newton rings could be eliminated completely. Considering long-term behavior (> 6 months) a shift of the calibration curve for EBT2 and EBT3 films due to changes in the dynamic response of the active component was observed.In conclusion, the new EBT3 film yields comparable results to its predecessor EBT2. The general advantages of radiochromic film dosimeters are completed by high film homogeneity, low energy dependence for the observed energy range and a minimized face-up/down dependence. EBT2 dosimetry-protocols can also be used for EBT3 films, but the inclusion of periodical recalibration-interval (e.g. once a quarter) is recommended for protocols of both film generations. © 2013.

Sminia P.,VU University Amsterdam | Mayer R.,EBG MedAustron GmbH
Cancers | Year: 2012

Malignant gliomas relapse in close proximity to the resection site, which is the postoperatively irradiated volume. Studies on re-irradiation of glioma were examined regarding radiation-induced late adverse effects (i.e., brain tissue necrosis), to obtain information on the tolerance dose and treatment volume of normal human brain tissue. The studies were analyzed using the linear-quadratic model to express the re-irradiation tolerance in cumulative equivalent total doses when applied in 2 Gy fractions (EQD2 cumulative). Analysis shows that the EQD2 cumulative increases from conventional re-irradiation series to fractionated stereotactic radiotherapy (FSRT) to LINAC-based stereotactic radiosurgery (SRS). The mean time interval between primary radiotherapy and the re-irradiation course was shortened from 30 months for conventional re-irradiation to 17 and 10 months for FSRT and SRS, respectively. Following conventional re-irradiation, radiation-induced normal brain tissue necrosis occurred beyond an EQD2 cumulative around 100 Gy. With increasing conformality of therapy, the smaller the treatment volume is, the higher the radiation dose that can be tolerated. Despite the dose escalation, no increase in late normal tissue toxicity was reported. On basis of our analysis, the use of particle therapy in the treatment of recurrent gliomas, because of the optimized physical dose distribution in the tumour and surrounding healthy brain tissue, should be considered for future clinical trials. © 2012 by the authors; licensee MDPI, Basel, Switzerland.

Lettry J.,CERN | Penescu L.,EBG MedAustron GmbH | Wallner J.,EBG MedAustron GmbH | Sargsyan E.,EBG MedAustron GmbH
Review of Scientific Instruments | Year: 2010

The MedAustron Ion therapy center will be constructed in Wiener Neustadt (Austria) in the vicinity of Vienna. Its accelerator complex consists of four ion sources, a linear accelerator, a synchrotron, and a beam delivery system to the three medical treatment rooms and to the research irradiation room. The ion sources shall deliver beams of H3 1+, C4+, and light ions with utmost reliability and stability. This paper describes the features of the ion sources presently planned for the MedAustron facility, such as ion source main parameters, gas injection, temperature control, and cooling systems. A dedicated beam diagnostics technique is proposed in order to characterize electron cyclotron resonance (ECR) ion beams; in the first drift region after the ion source, a fraction of the mixed beam is selected via moveable aperture. With standard beam diagnostics, we then aim to produce position-dependant observables such as ion-current density, beam energy distribution, and emittance for each charge states to be compared to simulations of ECR e-heating, plasma simulation, beam formation, and transport. © 2010 American Institute of Physics.

Liebl J.,EBG MedAustron GmbH | Paganetti H.,Harvard University | Zhu M.,Harvard University | Winey B.A.,Harvard University
Medical Physics | Year: 2014

Purpose: Proton radiotherapy allows radiation treatment delivery with high dose gradients. The nature of such dose distributions increases the influence of patient positioning uncertainties on their fidelity when compared to photon radiotherapy. The present work quantitatively analyzes the influence of setup uncertainties on proton range and dose distributions. Methods: Thirty-eight clinical passive scattering treatment fields for small lesions in the head were studied. Dose distributions for shifted and rotated patient positions were Monte Carlo-simulated. Proton range uncertainties at the 50%- and 90%-dose falloff position were calculated considering 18 arbitrary combinations of maximal patient position shifts and rotations for two patient positioning methods. Normal tissue complication probabilities (NTCPs), equivalent uniform doses (EUDs), and tumor control probabilities (TCPs) were studied for organs at risk (OARs) and target volumes of eight patients. Results: The authors identified a median 1σ proton range uncertainty at the 50%-dose falloff of 2.8 mm for anatomy-based patient positioning and 1.6 mm for fiducial-based patient positioning as well as 7.2 and 5.8 mm for the 90%-dose falloff position, respectively. These range uncertainties were correlated to heterogeneity indices (HIs) calculated for each treatment field (38% < R2 < 50%). A NTCP increase of more than 10% (absolute) was observed for less than 2.9% (anatomy-based positioning) and 1.2% (fiducial-based positioning) of the studied OARs and patient shifts. For target volumes TCP decreases by more than 10% (absolute) occurred in less than 2.2% of the considered treatment scenarios for anatomy-based patient positioning and were nonexistent for fiducial-based patient positioning. EUD changes for target volumes were up to 35% (anatomy-based positioning) and 16% (fiducial-based positioning). Conclusions: The influence of patient positioning uncertainties on proton range in therapy of small lesions in the human brain as well as target and OAR dosimetry were studied. Observed range uncertainties were correlated with HIs. The clinical practice of using multiple fields with smeared compensators while avoiding distal OAR sparing is considered to be safe. © 2014 American Association of Physicists in Medicine.

Loading EBG MedAustron GmbH collaborators
Loading EBG MedAustron GmbH collaborators