Time filter

Source Type

Kingsport, TN, United States

Eastman Chemical Company is a United States-based Fortune 500 company, engaged in the global manufacture and sale of chemicals, fibers, and plastics. Founded in 1920 and based in Kingsport, Tennessee, the company now has more than 40 manufacturing sites worldwide and employs approximately 15,000 people.Eastman Chemical was spun off from parent Eastman Kodak in 1994; in July 2012, Eastman acquired Solutia for $4.8 billion. Eastman had 2012 pro forma revenues of approximately $9.1 billion. Wikipedia.

Strasser W.,Eastman Chemical Company
Chemical Engineering Journal | Year: 2010

A numerical study was carried out to investigate steady-state and transient phase distribution, evaporation, and thermal runaway in a large-scale high-pressure trickle bed reactor. A cooling recycle stream, containing reaction products and a fresh feed, was included via a closed loop calculation. It was found that, as expected, phase distribution in the catalyst bed had a substantial impact on production rate; a faulty feed distribution system can cost approximately 20% in overall steady-state product conversion. In the event that the cooling recycle stream is lost, the external reactor shell temperature can exceed its design intent. It was found that reducing the quantity of fresh reactant feed in this situation can dramatically reduce the potential for vessel damage. Thermal inertia of the catalyst particles proved to be a significant contribution to the transient energy balance. Model results are supported with a posteriori thermal excursion plant data. © 2010 Elsevier B.V. Source

Strasser W.,Eastman Chemical Company
International Journal of Multiphase Flow | Year: 2011

A large-scale parametric air-water test stand (AWTS) study involving more than 40 evaluations was carried out for the purposes of three-stream airblast reactor feed injector characterization and optimization; a subset of seven air stream combinations is discussed here. The role of CFD as a supplement to, or a replacement for, air-water testing is of great industrial interest. To this end a set of CFD simulations was carried out to complement the AWTS study. Pressure responses, spray opening characteristics near the feed injector face, and spray distribution were primary measures for both the AWTS and CFD programs. It was found that, over the range of variables studied, there was somewhat of a match between CFD and AWTS results. A self-exciting, pulsatile spray pattern was achieved in CFD and AWTS (frequencies between 75 and 600. Hz), and an interesting transition in spray bursting character occurred at moderate inner air flows. The oscillatory flow pattern mimics prior work in terms of the energy of the fluctuations, but the fact that the present fluctuations occur at an order of magnitude lower frequency is apparently related to the comparatively low gas/liquid momentum ratio in the current study. Overall, it is shown that the CFD method contained herein can be used to supplement, but not replace, air-water testing for said injector configuration. © 2011 Elsevier Ltd. Source

Disclosed is a process to produce a dry purified carboxylic acid product comprising furan-2,5-dicarboxylic acid (FDCA). The process comprises oxidizing at least one oxidizable compound selected from the following group: 5-(hydroxymethyl)furfural (5-HMF), 5-HMF esters (5-R(CO)OCH

Eastman Chemical Company | Date: 2015-04-23

Cleaning compositions and methods of making and using the same are provided. The cleaning compositions of the present invention may include at least one alkyl 3-hydroxybutyrate and water, optionally including at least one surfactant and one or more additional additives. The cleaning compositions of the present invention, which are non-toxic and environmentally benign, can be useful to remove many types of soils from a range of different substrates in a variety of domestic, industrial, and/or institutional applications.

Eastman Chemical Company | Date: 2015-02-06

This invention relates to polymer compositions comprising: (1) at least one polymer selected from the groups consisting of: nylon, polyesters, copolyesters, polyethylene, polypropylene, polyamides; polystyrene, polystyrene copolymers, styrene acrylonitrile copolymers, acrylonitrile butadiene styrene copolymers, poly(methylmethacrylate), acrylic copolymers, poly(ether-imides); polyphenylene oxides or poly(phenylene oxide)/polystyrene blends, polystyrene resins; polyphenylene sulfides; polyphenylene sulfide/sulfones; poly(ester-carbonates); polycarbonates; polysulfones; polysulfone ethers; and poly(ether-ketones); or mixtures of any of the other foregoing polymers, and (2) at least one fluoroalkyl derivative.

Discover hidden collaborations