Shanghai, China

East China Normal University , commonly referred to as ECNU, is a comprehensive research university in Shanghai, China. Established in 1951, it is the first national normal university of the People's Republic of China.Originally founded to train school teachers, the University is now an institution training researchers, professors, high-level civil servants, as well as business and political leaders. Sponsored by the national program "Project 211" and "Project 985", the university is a staunch force in the nation's research in the humanities, social science and technology innovation, and is reputed to be the "Columbia of the East". ECNU is ranked 67th in Asia according to the Times Higher Education Asia University Rankings in 2014, while the Leiden Ranking considered it 280th worldwide in 2013.ECNU is an institution of higher education with global impact. China's first Sino-US higher education institute – New York University Shanghai – is jointly operated by New York University and ECNU. King's College London, the University of California, as well as the University of Manchester hold their international summer schools at ECNU each year.Since 2013, the University officially changed its French name to École normale supérieure de l'Est de la Chine, to put forward the academic cooperation between ECNU and the École Normale Supérieure Group in France. And the ENS-ECNU Joint Graduate School was formally established in June 2005. Wikipedia.


Time filter

Source Type

Zhang C.,Peking University | Tang C.,Peking University | Jiao N.,Peking University | Jiao N.,East China Normal University
Chemical Society Reviews | Year: 2012

Copper salts have been developed as versatile catalysts for oxidative coupling reactions in organic synthesis. During these processes, Cu-catalysts are often proposed to serve as a one-electron oxidant to promote the single-electron transfer process. Recently, the transition-metal catalyzed direct dehydrogenative transformation has attracted considerable attention. This tutorial review summarizes the recent advances in the copper-catalyzed dehydrogenative functionalization via a single electron transfer (SET) process achieving C-C, C-N, C-O, C-halogen atoms, C-P, and N-N bond formation. © The Royal Society of Chemistry 2012.


Patent
East China Normal University, CAS Shanghai Institute of Materia Medica and Nanjing Luyesike Pharmaceutical Co. | Date: 2014-02-26

Provided are a camptothecin compound containing 7-membered lactone ring, as shown in general formula I, and pharmaceutically acceptable salt thereof, as well as the preparation method and use thereof. In general formula I, R_(1) is H, a C1C3 alkyl, acetyl or propionyl; R_(2) is H, a C1C6 alkyl, a C3~C6 cycloalkyl, piperidyl; or a C1C6 alkyl substituted by an amino; R_(3) is H, a C1C3 alkyl, or a C1C6 alkyl substituted by an amino; R_(4) is H, a hydroxyl, or a C1C6 alkoxy; R_(5) is H, or a C1C6 alkoxyl; or R_(4) and R_(5) are linked to each other to form -OCH_(2)O- or -OCH_(2)CH_(2)O-. The compound has good anti-tumor activity, and can be clinically used via oral administration, intravenous injection, and intramuscular injection, among others.


Qiana D.,East China Normal University | Zhang J.,East China Normal University | Zhang J.,CAS Shanghai Institute of Organic Chemistry
Chemical Society Reviews | Year: 2015

Homogeneous gold-catalyzed cyclopropanation has emerged as a powerful method in organic synthesis due to its rich chemistry and fascinating reactivity. This thriving strategy is remarkable for its mild conditions, good selectivity, and high efficiency, which provides complementarity and orthogonality to traditional metal-catalyzed cyclopropanation. This review summarizes recent advances in gold-catalyzed cyclopropanation divided by the type of carbenoid precursors. Besides the commonly used diazo compounds, current approaches enable readily available enynes, propargyl esters, cyclopropenes, cycloheptatrienes, alkynes, and sulfonium ylides as safer surrogates in the realm of gold carbenoid chemistry. Meanwhile, these reactions allow for the rapid building of molecular complexity including synthetically useful and intricate cyclic, heterocyclic, and polycyclic skeletons. The combination of the new reactivity of gold complexes with their capability to catalyze cyclopropanations may lead to myriad opportunities for the design of new reactions. Furthermore, the synthetic utilities of such superior methods have also been illustrated by the total syntheses of selected natural and biologically interesting products and the asymmetric formation of challenging target molecules. © The Royal Society of Chemistry 2015.


Yu S.,CAS Shanghai Institute of Organic Chemistry | Ma S.,CAS Shanghai Institute of Organic Chemistry | Ma S.,East China Normal University
Angewandte Chemie - International Edition | Year: 2012

Allenes are the simplest class of cumulenes, with two contiguous C=C bonds, and show unique physical and chemical properties. These features make allenes particularly attractive in modern organic chemistry. In this Review, attention is paid to the advances made in catalytic asymmetric synthesis and natural product syntheses based on well-established reactions of allenes, such as propargylation, addition, cycloaddition, cycloisomerization, cyclization, etc., with or without catalysts. Their versatile reactivity, substituent-loading ability, axial to center chirality transfer, and controllable selectivity allow access to target molecules by unique and efficient approaches. The main topics in this Review are presented with selected examples from 2003 to 2011. Creative and easy syntheses of chiral compounds and natural products are possible by using allenes. These compounds display exceptional physical and chemical properties, and thus offer new possibilities in catalytic asymmetric synthesis and the total synthesis of natural products. The remarkable progress made in these two topics is summarized selectively in this Review. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.


Hu J.,Anhui University of Science and Technology | Xu T.,Anhui University of Science and Technology | Cheng Y.,East China Normal University
Chemical Reviews | Year: 2012

Applications of various NMR techniques to investigate the host behaviors of different dendrimers were reviewed. Chemical shift titration experiments give information on the types of interactions between dendrimer and guests, and can be used to calculate the binding parameters of the host-guest systems including number of binding sites and binding affinities. NOE analysis provides precise spatial conformations such as the localizations and orientations of the guests within the dendrimer/guest complexes. Diffusion NMR reveals the size of the dendrimer/guest complexes and can be used to predict the supramolecular structure of the dendrimer/surfactant aggregates. Relaxation measurement reflects the mobility and rigidity of the guest molecules bound with dendrimers. Besides, the combination of NOE, diffusion, and STD NMR experiments is successfully used for high-throughput screening dendrimer-binding drugs. NMR techniques also provide precise size information of palladium nanoparticles loaded within dendrimers.


Liu Y.-L.,East China Normal University | Zhou J.,East China Normal University
Chemical Communications | Year: 2013

We report the first catalytic asymmetric cyanation of N-Boc ketoimines, which enables highly enantioselective synthesis of oxindole based α-amino nitriles. An unprecedented tandem aza-Wittig/Strecker reaction is also developed, emerging as a promising strategy for the catalytic asymmetric cyanation of ketoimines formed in situ from achiral ketones. © 2013 The Royal Society of Chemistry.


Zhao X.,East China Normal University
Topics in Current Chemistry | Year: 2012

Membrane proteins are a large, diverse group of proteins, representing about 20-30% of the proteomes of most organisms, serving a multitude of cellular functions and more than 40% of drug targets. Knowledge of a membrane protein structure enables us insight into its function and dynamics, and can be used for further rational drug design. Owing to the intrinsic hydrophobicity, flexibility, and instability of membrane proteins, solid-state NMR may offer an unique opportunity to study membrane protein structure, ligand binding, and activation at atomic resolution in the native membrane environment on a wide ranging time scale. Over the past several years, solid-state NMR has made tremendous progress, showing its capability of determining membrane protein structure, ligand binding, and protein dynamic conformation on a variety of time scales at atomic resolution. In this chapter we will mainly discuss some recent achievements on membrane protein structure determination, ligand conformation and binding, structure changes upon activation, and structure of insoluble fibrous proteins investigated by using magic-angle spinning solid-state NMR from the structural biology point of view. Protein dynamics, sensitivity enhancement, and the possibility of chemical shift-based structure determination in solid-state NMR are also briefly touched upon. © 2011 Springer-Verlag Berlin Heidelberg.


Wang T.,East China Normal University
Physical Review D - Particles, Fields, Gravitation and Cosmology | Year: 2011

The spherically symmetric static solutions are searched for in some f(T) models of gravity theory with a Maxwell term. To do this, we demonstrate that reconstructing the Lagrangian of f(T) theories is sensitive to the choice of frame, and then we introduce a particular frame based on the conformally Cartesian coordinates. In this particular frame, the existence conditions of various solutions are presented. Our results imply that only a limited class of f(T) models can be solved in this frame. For more general models, the search for spherically symmetric static solutions is still an open and challenging problem, hopefully solvable in other frames. © 2011 American Physical Society.


Guo X.,East China Normal University | Hu W.,East China Normal University
Accounts of Chemical Research | Year: 2013

Multicomponent reactions (MCRs) are one-pot processes in which three or more starting materials form a product that incorporates the structural features of each reagent. These reactions date back to the mid-19th century, when Strecker first prepared α-aminonitriles through the condensation of aldehydes with ammonia and hydrogen cyanide. In addition to affording products with structural complexity and diversity, MCRs offer the advantages of simplicity, synthetic efficiency, synthetic convergence, and atom economy. Therefore, they have played an important role in modern synthetic organic chemistry and drug-discovery research.The irreversible trapping of an active intermediate generated from two components by a third one offers an effective way to discover novel MCRs. In cases where the intermediate from the first two components is reactive enough to generate a two-component byproduct, it becomes challenging to control of the chemoselectivity of these MCRs over the side reaction. For example, researchers had expected that ammonium/oxonium ylides, high energy intermediates that have acidic protons and basic carbanions attached to adjacent carbons, would be too reactive to be intercepted by external electrophiles. Instead, a very fast 1,2-proton transfer would neutralize the charge separation, resulting in a stable N-H/O-H insertion product.In this Account, we present our efforts toward the development of novel MCRs via trapping of the active ammonium/oxonium ylide intermediates with a number of electrophiles. In these reactions, a "delayed proton transfer" that occurs after the trapping process produces novel multicomponent coupling products. Thus, transition-metal-catalyzed MCRs of diazocarbonyl compounds, anilines/alcohols, and electrophiles efficiently afford polyfunctional molecules such as α-amino-β-hydroxy acids, α-hydroxy-β-amino acids, α,β-diamino acids, and α,β-dihydroxy acid derivatives. We have also applied a cooperative catalysis strategy to some of these MCRs leading to reactions with high chemo-, diastereo-, and enantioselectivity. These MCRs also provide solid experimental evidence for the existence of the active protic onium ylides. © 2013 American Chemical Society.


Zhou J.,East China Normal University
Chemistry - An Asian Journal | Year: 2010

Multicatalyst promoted asymmetric tandem reactions have emerged as a powerful strategy to improve the synthetic efficiency. It enables the synthesis of complex molecules with high selectivity from simple starting materials in an almost biomimetic-like way. The use of multiple catalyst systems can enlarge the substrate and reaction scope for the reaction design, improve the reactivity, and benefit the control of selectivity. In this Focus Review, the current achievement of this promising field is discussed, including the advantages and difficulties of this research, and the strategies applied to address these problems. © 2010 Wiley-VCH Verlag GmbH&Co. KGaA.

Loading East China Normal University collaborators
Loading East China Normal University collaborators