Earth System Physics Group

Trieste, Italy

Earth System Physics Group

Trieste, Italy
SEARCH FILTERS
Time filter
Source Type

Shalaby A.,Earth System Physics Group | Zakey A.S.,Earth System Physics Group | Zakey A.S.,Danish Meteorological Institute | Tawfik A.B.,University of Michigan | And 6 more authors.
Geoscientific Model Development | Year: 2012

The RegCM-CHEM4 is a new online climate-chemistry model based on the International Centre for Theoretical Physics (ICTP) regional climate model (RegCM4). Tropospheric gas-phase chemistry is integrated into the climate model using the condensed version of the Carbon Bond Mechanism (CBM-Z; Zaveri and Peters, 1999) with a fast solver based on radical balances. We evaluate the model over continental Europe for two different time scales: (1) an event-based analysis of the ozone episode associated with the heat wave of August 2003 and (2) a climatological analysis of a six-year simulation (2000-2005). For the episode analysis, model simulations show good agreement with European Monitoring and Evaluation Programme (EMEP) observations of hourly ozone over different regions in Europe and capture ozone concentrations during and after the summer 2003 heat wave event. For long-term climate simulations, the model captures the seasonal cycle of ozone concentrations with some over prediction of ozone concentrations in non-heat wave summers. Overall, the ozone and ozone precursor evaluation shows the feasibility of using RegCM-CHEM4 for decadal-length simulations of chemistry-climate interactions. © Author(s) 2012.


Steiner A.L.,University of Michigan | Tawfik A.B.,University of Michigan | Tawfik A.B.,Center for Ocean Land Atmosphere Studies | Shalaby A.,Egyptian Meteorological Authority | And 6 more authors.
Climate Research | Year: 2014

An integrated chemistry-climate model (RegCM4-CHEM) simulates present-day climate, ozone and tropospheric aerosols over Egypt with a focus on northern Africa and the Greater Cairo (GC) region. The densely populated GC region is known for its severe air quality issues driven by high levels of anthropogenic pollution in conjunction with natural sources such as dust, and agricultural burning events. We find that current global emission inventories underestimate key pollutants such as nitrogen oxides and anthropogenic aerosol species. In the GC region, average ground-based observations of the daily July maximum nitrogen dioxide (NO2) are 40 to 60 parts per billion by volume (ppbv) and are about 10 ppbv higher than modeled estimates, likely due to model grid cell resolution, improper boundary layer representation, and poor emissions inventories. Observed July daily maximum ozone concentrations range from 30 ppbv (winter) to 90 ppbv (summer). The model reproduces the seasonal cycle fairly well, but modeled July ozone is underestimated by approximately 10 ppbv and exhibits little interannual variability. For aerosols, springtime dust events dominate the seasonal aerosol cycle. The chemistry-climate model captures the springtime peak aerosol optical depth (AOD) of 0.7 to 1 but is slightly greater than satellite-derived AOD. Observed AOD decreases in the summer and increases again in the fall due to agricultural burning events in the Nile Delta; however, the model underestimates this observed AOD peak in fall, as standard emissions inventories underestimate the extent of this burning and the resulting aerosol emissions. Our comparison of modeled gas and particulate phase atmospheric chemistry in the GC region indicates that improved emissions inventories of mobile sources and other anthropogenic activities, specifically NOx and organic aerosols, are needed to improve air quality simulations in this region. © Inter-Research 2014.

Loading Earth System Physics Group collaborators
Loading Earth System Physics Group collaborators