Time filter

Source Type

Tong X.,Earth Observation Data Center
IEEE Geoscience and Remote Sensing Magazine | Year: 2015

China has developed some satellite series such as meteorological satellite series Fengyun (FY), ocean satellite series Haiyang (HY), Earth resources satellite series Ziyuan (ZY), environment and disaster monitoring small satellite constellation (HJ), as well as Shijian satellite series (SJ) for new technological experiments, and has formed a complete Earth observation satellite and ground application system. Until now, 20 Chinese Earth observation satellites have been launched. Chinese Earth observation system has not only largely contributed to the rapid economic development of China, but also become a crucial part of international Earth observation system. © 2013 IEEE.


Doneus M.,University of Vienna | Miholjek I.,Nike | Mandlburger G.,Vienna University of Technology | Doneus N.,LBI for Archaeological Prospection and Virtual Archaeology | And 4 more authors.
International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives | Year: 2015

Knowledge of underwater topography is essential to the understanding of the organisation and distribution of archaeological sites along and in water bodies. Special attention has to be paid to intertidal and inshore zones where, due to sea-level rise, coastlines have changed and many former coastal sites are now submerged in shallow water. Mapping the detailed inshore topography is therefore important to reconstruct former coastlines, identify sunken archaeological structures and locate potential former harbour sites. However, until recently archaeology has lacked suitable methods to provide the required topographical data of shallow underwater bodies. Our research shows that airborne topo-bathymetric laser scanner systems are able to measure surfaces above and below the water table over large areas in high detail using very short and narrow green laser pulses, even revealing sunken archaeological structures in shallow water. Using an airborne laser scanner operating at a wavelength in the green visible spectrum (532 nm) two case study areas in different environmental settings (Kolone, Croatia, with clear sea water; Lake Keutschach, Austria, with turbid water) were scanned. In both cases, a digital model of the underwater topography with a planimetric resolution of a few decimeters was measured. While in the clear waters of Kolone penetration depth was up to 11 meters, turbid Lake Keutschach allowed only to document the upper 1.6 meters of its underwater topography. Our results demonstrate the potential of this technique to map submerged archaeological structures over large areas in high detail providing the possibility for systematic, large scale archaeological investigation of this environment.

Loading Earth Observation Data Center collaborators
Loading Earth Observation Data Center collaborators