Time filter

Source Type

Lee M.S.,Korea Institute of Oriental Medicine | Lee J.A.,Korea Institute of Oriental Medicine | Alraek T.,e Artic University of Norway | Alraek T.,Oslo University College | And 11 more authors.
Chinese Journal of Integrative Medicine | Year: 2014

A symposium on pattern identification (PI) was held at the Korea Institute of Oriental Medicine (KIOM) on October 2, 2013, in Daejeon, South Korea. This symposium was convened to provide information on the current research in PI as well as suggest future research directions. The participants discussed the nature of PI, possible research questions, strategies and future international collaborations in pattern research. With eight presentations and an extensive panel discussion, the symposium allowed participants to discuss research methods in traditional medicine for PI. One speaker presented the topic, 'Clinical pattern differentiation and contemporary research in PI.' Two speakers presented current trends in research on blood stasis while the remaining five other delegates discussed the research methods and future directions of PI research. The participants engaged in in-depth discussions regarding the nature of PI, potential research questions, strategies and future international collaborations in pattern research. © 2014 Chinese Association of the Integration of Traditional and Western Medicine and Springer-Verlag Berlin Heidelberg.


Forsdahl S.,e Artic University of Norway | Kiselev Y.,e Artic University of Norway | Kiselev Y.,e Arctic University of Norway | Hogseth R.,e Artic University of Norway | And 2 more authors.
PLoS ONE | Year: 2014

Pax6 is a transcription factor important for early embryo development. It is expressed in several cancer cell lines and tumors. In glioblastoma, PAX6 has been shown to function as a tumor suppressor. Dickkopf 3 (Dkk3) is well established as a tumor suppressor in several tumor types, but not much is known about the regulation of its expression. We have previously found that Pax6 and Pax6(5a) increase the expression of the Dkk3 gene in two stably transfected mouse fibroblast cell lines. In this study the molecular mechanism behind this regulation is looked at. Western blot and reverse transcriptase quantitative PCR (RT-qPCR) confirmed higher level of Dkk3 expression in both Pax6 and Pax6(5a) expressing cell lines compared to the control cell line. By the use of bioinformatics and electrophoretic mobility shift assay (EMSA) we have mapped a functional Pax6 binding site in the mouse Dkk3 promoter. The minimal Dkk3 promoter fragment required for transcriptional activation by Pax6 and Pax6(5a) was a 200 bp region just upstream of the transcriptional start site. Mutation of the evolutionary conserved binding site in this region abrogated transcriptional activation and binding of Pax6/Pax6(5a) to the mouse Dkk3 promoter. Since the identified Pax6 binding site in this promoter is conserved, RT-qPCR and Western blot were used to look for regulation of Dkk3/REIC expression in human cell lines. Six of eight cell lines tested showed changes in Dkk3/REIC expression after PAX6 siRNA knockdown. Interestingly, we observed that the Pax6/Pax6(5a) expressing mouse fibroblast cell lines were less responsive to canonical Wnt pathway stimulation than the control cell line when TOP/FOP activity and the levels of active β-catenin and GSK3-β Ser9 phosphorylation were measured after LiCl stimulation. © 2014 Forsdahl et al.


PubMed | China Medical University at Heping, University of Technology, Sydney, Oslo University College, Hong Kong Baptist University and 4 more.
Type: Journal Article | Journal: Chinese journal of integrative medicine | Year: 2014

A symposium on pattern identification (PI) was held at the Korea Institute of Oriental Medicine (KIOM) on October 2, 2013, in Daejeon, South Korea. This symposium was convened to provide information on the current research in PI as well as suggest future research directions. The participants discussed the nature of PI, possible research questions, strategies and future international collaborations in pattern research. With eight presentations and an extensive panel discussion, the symposium allowed participants to discuss research methods in traditional medicine for PI. One speaker presented the topic, Clinical pattern differentiation and contemporary research in PI. Two speakers presented current trends in research on blood stasis while the remaining five other delegates discussed the research methods and future directions of PI research. The participants engaged in in-depth discussions regarding the nature of PI, potential research questions, strategies and future international collaborations in pattern research.


Pax6 is a transcription factor important for early embryo development. It is expressed in several cancer cell lines and tumors. In glioblastoma, PAX6 has been shown to function as a tumor suppressor. Dickkopf 3 (Dkk3) is well established as a tumor suppressor in several tumor types, but not much is known about the regulation of its expression. We have previously found that Pax6 and Pax6(5a) increase the expression of the Dkk3 gene in two stably transfected mouse fibroblast cell lines. In this study the molecular mechanism behind this regulation is looked at. Western blot and reverse transcriptase quantitative PCR (RT-qPCR) confirmed higher level of Dkk3 expression in both Pax6 and Pax6(5a) expressing cell lines compared to the control cell line. By the use of bioinformatics and electrophoretic mobility shift assay (EMSA) we have mapped a functional Pax6 binding site in the mouse Dkk3 promoter. The minimal Dkk3 promoter fragment required for transcriptional activation by Pax6 and Pax6(5a) was a 200 bp region just upstream of the transcriptional start site. Mutation of the evolutionary conserved binding site in this region abrogated transcriptional activation and binding of Pax6/Pax6(5a) to the mouse Dkk3 promoter. Since the identified Pax6 binding site in this promoter is conserved, RT-qPCR and Western blot were used to look for regulation of Dkk3/REIC expression in human cell lines. Six of eight cell lines tested showed changes in Dkk3/REIC expression after PAX6 siRNA knockdown. Interestingly, we observed that the Pax6/Pax6(5a) expressing mouse fibroblast cell lines were less responsive to canonical Wnt pathway stimulation than the control cell line when TOP/FOP activity and the levels of active -catenin and GSK3- Ser9 phosphorylation were measured after LiCl stimulation.

Loading e Artic University of Norway collaborators
Loading e Artic University of Norway collaborators