Time filter

Source Type

West Chester, PA, United States

Bennett R.H.,Seaprobe Inc. | Hulbert M.H.,Research Dynamics | Curry K.J.,University of Southern Mississippi | Curry A.,University of Southern Mississippi | Douglas J.,University of Southern Mississippi
Marine Geology

Transmission Electron Microscopy (TEM) observations confirm theoretical predictions of the location of organic matter (OM) sequestered in fine-grained sediment. Organo-clay micro- and nanoscale fabric images validate for the first time the protective adsorption model of OM preservation. Preservation of OM against enzymatic digestion is demonstrated predominately at locations consistent with our model of the potential energy field that is developed through interactions of clay minerals, the OM, and pore water chemistry. Pores observed in 2-D fabric TEM images of clay muds commonly appear to be totally encapsulated. However, the great majority of these pores are clearly demonstrated to be open in one or more directions when observed in rotated 3-D images. Despite the scarcity of completely closed pores, OM is preserved against enzymatic attack in those locations where the predicted 3-D potential energy of interaction between clay domains and OM is attractive. © 2012 Elsevier B.V. Source

Discover hidden collaborations