Entity

Time filter

Source Type


Wang X.,CNRS Charles Coulomb Laboratory | In M.,CNRS Charles Coulomb Laboratory | Blanc C.,CNRS Charles Coulomb Laboratory | Nobili M.,CNRS Charles Coulomb Laboratory | And 2 more authors.
Soft Matter | Year: 2015

We have investigated the active motion of self-propelled colloids confined at the air-water interface and explored the possibility of enhancing the directional motion of self-propelled Janus colloids by slowing down their rotational diffusion. The two dimensional motion of micron-sized silica-platinum Janus colloids has been experimentally measured by particle tracking video-microscopy at increasing concentrations of the catalytic fuel, i.e. H2O2. Compared to the motion in the bulk, a dramatic enhancement of both the persistence length of trajectories and the speed has been observed. The interplay of colloid self-propulsion, due to an asymmetric catalytic reaction occurring on the colloid, surface properties and interfacial frictions controls the enhancement of the directional movement. The slowing down of the rotational diffusion at the interface, also measured experimentally, plays a pivotal role in the control and enhancement of active motion. © The Royal Society of Chemistry. Source


Dhoke G.V.,RWTH Aachen | Loderer C.,TU Dresden | Davari M.D.,RWTH Aachen | Ansorge-Schumacher M.,TU Dresden | And 3 more authors.
Journal of Computer-Aided Molecular Design | Year: 2015

Molecular docking of substrates is more challenging compared to inhibitors as the reaction mechanism has to be considered. This becomes more pronounced for zinc-dependent enzymes since the coordination state of the catalytic zinc ion is of greater importance. In order to develop a predictive substrate docking protocol, we have performed molecular docking studies of diketone substrates using the catalytic state of carbonyl reductase 2 from Candida parapsilosis (CPCR2). Different docking protocols using two docking methods (AutoDock Vina and AutoDock4.2) with two different sets of atomic charges (AM1-BCC and HF-RESP) for catalytic zinc environment and substrates as well as two sets of vdW parameters for zinc ion were examined. We have selected the catalytic binding pose of each substrate by applying mechanism based distance criteria. To compare the performance of the docking protocols, the correlation plots for the binding energies of these catalytic poses were obtained against experimental Vmax values of the 11 diketone substrates for CPCR2. The best correlation of 0.73 was achieved with AutoDock4.2 while treating catalytic zinc ion in optimized non-bonded (NBopt) state with +1.01 charge on the zinc ion, compared to 0.36 in non-bonded (+2.00 charge on the zinc ion) state. These results indicate the importance of catalytic constraints and charge parameterization of catalytic zinc environment for the prediction of substrate activity in zinc-dependent enzymes by molecular docking. The developed predictive docking protocol described here is in principle generally applicable for the efficient in silico substrate spectra characterization of zinc-dependent ADH. © 2015 Springer International Publishing Switzerland. Source


Artz J.,RWTH Aachen | Mallmann S.,Dwi Leibniz Institute For Interaktive Materialien | Palkovits R.,RWTH Aachen
ChemSusChem | Year: 2015

The selective aerobic oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-diformylfuran has been performed under mild conditions at 80 8C and 20 bar of synthetic air in methyl t-butyl ether. Ru clusters supported on covalent triazine frameworks (CTFs) allowed excellent selectivity and superior catalytic activity compared to other support materials such as activated carbon, γ-Al2O3, hydrotalcite, or MgO. CTFs with varying pore size, specific surface area, and N content could be prepared from different monomers. The structural properties of the CTF materials influence the catalytic activity of Ru/CTF significantly in the aerobic oxidation of HMF, which emphasizes the superior activity of mesoporous CTFs. Recycling of the catalysts is challenging, but promising methods to maintain high catalytic activity were developed that facilitate only minor deactivation in five consecutive recycling experiments. © 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. Source


Hassan N.,Paris-Sorbonne University | Hassan N.,CNRS Chemistry Laboratory | Hassan N.,University of Chile | Stocco A.,CNRS Charles Coulomb Laboratory | And 3 more authors.
Journal of Physical Chemistry C | Year: 2015

One among other remarkable methods to produce multifunctional assemblies with different spatial organizations is the use of liquid-liquid (L-L) interfaces. Herein, a droplet microfluidic-based method is reported as a strategy for the assembly of asymmetrical inorganic nanohybrid structures. As a proof of concept and motivated by their wide applications in different fields, we studied the assembly of two building nanoblocks, which are fluorescent silica (160 nm diameter) and gold nanoparticles (15 nm diameter). In this strategy, droplets of an aqueous solution of citrated gold nanoparticles are generated in a continuous flow of amine functionalized fluorescent silica nanoparticles dispersed in cyclohexane using the microdevice. The electrostatic attraction between the two nanoparticles confined at the water/cyclohexane interface to form a Pickering emulsion allowed their assembly. We show that Janus nanohybrids can only be observed when the residence time in the microdevice was less than 30 min, thus avoiding the formation of solid shells for longer residence times. Transmission and scanning electron microscopies, optical microscopies, and UV-vis spectroscopy were used to characterize the resulting assemblies. The results were compared to experiments in bulk which showed that microfluidics offers a higher control over the assembly and reduces the time for their elaboration. Moreover, an analytical model based on transport of nanoparticles and their adsorption onto interfaces is used to rationalize our observations. Both flow recirculation inside and outside the droplets in the microchannel and the confinement effect seem to be relevant for the enhanced nanoparticle transport to the interfaces. © 2015 American Chemical Society. Source


Lulsdorf N.,Dwi Leibniz Institute For Interaktive Materialien | Vojcic L.,RWTH Aachen | Hellmuth H.,Henkel AG | Weber T.T.,Henkel AG | And 5 more authors.
Applied Microbiology and Biotechnology | Year: 2015

Esterases hydrolyze ester bonds with an often high stereoselectivity as well as regioselectivity and are therefore industrially employed in the synthesis of pharmaceuticals, in food processing, and in laundry detergents. Continuous screening systems based on p-nitrophenyl- (e.g., p-nitrophenyl acetate) or umbelliferyl-esters are commonly used in directed esterase evolution campaigns. Ongoing challenges in directed esterase evolution are screening formats which offer a broad substrate spectrum, especially for complex aromatic substrates. In this report, a novel continuous high throughput screening system for indirect monitoring of esterolytic activity was developed and validated by detection of phenols employing phenyl benzoate as substrate and p-nitrobenzyl esterase (pNBEBL from Bacillus licheniformis) as catalyst. The released phenol directly reacts with 4-aminoantipyrine yielding the red compound 1,5-dimethyl-4-(4-oxo-cyclohexa-2,5-dienylidenamino)-2-phenyl-1,2-dihydro-pyrazol-3-one. In this continuous B. licheniformis esterase activity detection system (cBLE-4AAP), the product formation is followed through an increase in absorbance at 509 nm. The cBLE-4AAP screening system was optimized in 96-well microtiter plate format in respect to standard deviation (5 %), linear detection range (15 to 250 μM), lower detection limit (15 μM), and pH (7.4 to 10.4). The cBLE-4AAP screening system was validated by screening a random epPCR pNBEBL mutagenesis library (2000 clones) for improved esterase activity at elevated temperatures. Finally, the variant T3 (Ser378Pro) was identified which nearly retains its specific activity at room temperature (WT 1036 U/mg and T3 929 U/mg) and shows compared to WT a 4.7-fold improved residual activity after thermal treatment (30 min incubation at 69.4 °C; WT 170 U/mg to T3 804 U/mg). © 2015, Springer-Verlag Berlin Heidelberg. Source

Discover hidden collaborations