Wilmington, NC, United States
Wilmington, NC, United States

E. I. du Pont de Nemours and Company, commonly referred to as DuPont, is an American chemical company that was founded in July 1802 as a gunpowder mill by Éleuthère Irénée du Pont. In the 20th century, DuPont developed many polymers such as Vespel, neoprene, nylon, Corian, Teflon, Mylar, Kevlar, Zemdrain, M5 fiber, Nomex, Tyvek, Sorona and Lycra. DuPont developed Freon for the refrigerant industry, and later more environmentally friendly refrigerants. It developed synthetic pigments and paints including ChromaFlair.In 2014, DuPont was the world's fourth largest chemical company based on market capitalization and eighth based on revenue. Its stock price is a component of the Dow Jones Industrial Average. Wikipedia.


Time filter

Source Type

Polynucleotide sequences encoding diacylglycerol acyltransferase genes and the use of these acyltransferases for increased seed storage lipid production and altered fatty acid profiles in oilseed plants are disclosed. Transgenic soybean seed having increased total fatty acid content of at least 20% and altered fatty acids when compared to the total fatty acid content of non-transgenic, null segregant soybean seed are described. Methods for increasing the total fatty acid content of a soybean seed by at least 20% include steps of transformation and selection.


Patent
DuPont Company | Date: 2017-02-09

Disclosed is a fungicidal composition comprising (a) at least one compound selected from the compounds of Formula 1, N-oxides, and salts thereof, wherein R^(1), R^(2), R^(3), R^(4), R^(5 )and R^(6 )are as defined in the disclosure;and (b) at least one additional fungicidal compound. Also disclosed is a method for controlling plant diseases caused by fungal plant pathogens comprising applying to the plant or portion thereof, or to the plant seed, a fungicidally effective amount of a compound of Formula 1, an N-oxide, or salt thereof (e.g., as a component in the aforesaid composition). Also disclosed is a composition comprising: (a) at least one compound selected from the compounds of Formula 1 described above, N-oxides, and salts thereof; and at least one invertebrate pest control compound or agent.


This invention is directed to a polymer thick film transparent conductive composition that may be used in applications where thermoforming of the base substrate occurs, e.g., as in capacitive switches. Polycarbonate substrates are often used as the substrate and the polymer thick film conductive composition may be used without any barrier layer. Depending on the specific design, the thermoformable transparent conductor may be below or on top of a thermoformable silver conductor. Thermoformable electric circuits benefit from the presence of an encapsulant layer over the dried polymer thick film conductive composition. The electrical circuit is subsequently subjected to an injection molding process.


A porous membrane constructed of a cast polymeric film with a face located adjacent to at least a portion of the surface of a nanofiber substrate fabric. The membrane is not formed by lamination of two independent layers one layer being the film and the other being the substrate fabric.


This invention is directed to a polymer thick film transparent conductive composition with haptic response capability that may be used in applications where thermoforming of the base substrate occurs, e.g., as in capacitive switches. Polycarbonate substrates are often used as the substrate and the polymer thick film conductive composition may be used without any barrier layer. Depending on the specific design, the thermoformable transparent conductor may be below or on top of a thermoformable silver conductor. Thermoformable electric circuits benefit from the presence of an encapsulant layer over the dried polymer thick film conductive composition. The electrical circuit is subsequently subjected to an injection molding process.


Patent
DuPont Company | Date: 2017-07-05

Use of a yeast capable of producing ethanol and acetic acid by fermentation of a carbohydrate, in a method for the fermentation of cocoa beans, is disclosed.


Disclosed herein are biodegradable compositions comprising 1,3-propanediol, wherein the 1,3-propanediol in said biodegradable composition has a bio-based carbon content of about 1% to 100%. In addition, it is preferred that the 1,3-propanediol be biologically-derived, and wherein upon biodegradation, the biologically-derived 1,3-propanediol contributes no anthropogenic CO2 emissions to the atmosphere.


A multilayer laminate comprising in order, a polymeric film layer capable of withstanding a temperature of at least 200 C for at least 10 min, an adhesive layer having an areal weight of from 2 to 40 gsm capable of activation at a temperature of from 75 to 200 degrees C. and an inorganic refractory layer wherein the refractory layer comprises platelets in an amount at least 85% by weight with a dry areal weight of 15 to 50 gsm and has a residual moisture content of no greater than 10 percent by weight.


Patent
DuPont Company | Date: 2017-08-02

Provided are treated carbon fibers particularly suited for making thermoplastic composites with polyamide resin, and methods to make such treated carbon fibers.


Grushin V.V.,DuPont Company
Accounts of Chemical Research | Year: 2010

Figure Presented Although springing from two established fields, organometallic chemistry and fluorine chemistry, organometallic fluorine chemistry is still in its early stages. However, developments in this area are expected to provide new tools for the synthesis of selectively fluorinated organic compounds that have been in high demand. Selectively fluorinated organic molecules currently account for up to 40% of all agrochemicals and 20% of all pharmaceuticals on the market. Our research efforts have been focused on the development of new organometallic and catalytic methods for the selective introduction of fluorine and the CF3 group into the aromatic ring. Monofluorinated and trifluoromethylated aromatic compounds are still made by the old technologies that employ stoichiometric quantities of hazardous and costly materials. In this Account, we describe our studies toward the development of safe, catalytic alternatives to these methods. We have synthesized, characterized, and studied the reactivity of the first aryl palladium (II) fluoride complexes. We have demonstrated for the first time that a Pd-F bond can be formed in a soluble and isolable molecular complex: this bond is more stable than previously thought. Toward the goal of fluoroarene formation via Ar-F reductive elimination, we have studied a number of σ-aryl Pd(II) fluorides stabilized by various P, N, and S ligands. It has been established that numerous conventional tertiary phosphine ligands, most popular in Pd catalysis, are unlikely to be useful for the desired C-F bond formation at the metal center because of the competing, kinetically preferred P-F bond-forming reaction. A metallophosphorane mechanism has been demonstrated for the P-F bond-forming processes at Rh(I) and Pd(II), which rules out the possibility of controlling these reactions by varying the amount of phosphine in the system, a most common and often highly efficient technique in homogeneous catalysis. The novel F/Ph rearrangement of the fluoro analogue of Wilkinson's catalyst [(Ph 3P)3RhF] and P-F bond-forming reactions at Pd(II) are insensitive to phosphine concentration and, because of the small size of fluorine, occur even with bulky phosphine ligands. These observations may guide further efforts toward metalcatalyzed nucleophilic fluorination of haloarenes. We have also developed aryne-mediated and CuF2/TMEDA-promoted aromatic fluorination reactions. The formation of fluoroarenes from the corresponding iodo- and bromoarenes in the presence of the CuF2/TMEDA system is the first example of a transition metal-mediated fluorination of nonactivated aryl halides in the liquid phase. Progress has also been made toward the development of aromatic trifluoromethylation. We have found unexpectedly facile and clean benzotrifluoride formation as a result of Ph-CF3 reductive elimination from [(Xantphos)Pd(Ph)CF3]. This observation demonstrates for the first time that the notoriously strong and inert metal-CF3 bond can be easily cleaved (at 50-80°C) as a result of reductive elimination to produce the desired aryl-trifluoromethyl bond, the only previously missing link of the catalytic loop. Our study of the novel complex [(Ph3P)3RhCF3] has led to a rationale for the long-puzzling strong trans influence (electron donation) of the CF3 group which, in complete contrast, is known to be an electron acceptor in organic chemistry. © 2010 American Chemical Society.

Loading DuPont Company collaborators
Loading DuPont Company collaborators